SHARP WELL-POSEDNESS RESULTS FOR THE SCHRODINGER-BENJAMIN-ONO SYSTEM

被引:0
|
作者
Domingues, Leandro [1 ]
机构
[1] CEUNES UFES, Dept Matemat Aplicada, Rodovia BR 101 Norte,Km 60, BR-29932540 Sao Mateus, ES, Brazil
关键词
DE-VRIES SYSTEM; CAUCHY-PROBLEM; ILL-POSEDNESS; KDV EQUATION; GRAVITY-WAVE; ZAKHAROV;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This work is concerned with the Cauchy problem for a coupled Schrodinger-Benjamin-Ono system { i partial derivative(t)u + partial derivative(2)(x)u = alpha uv, t is an element of[-T,T], x is an element of R, partial derivative(t)u + nu H partial derivative(2)(x)v = beta partial derivative(x) (vertical bar u vertical bar(2)), u(0, x) = phi, v(0, x) = psi, (phi, psi) is an element of H-s'(R). In the non-resonant case (vertical bar nu vertical bar not equal 1), we prove local well-posedness for a large class of initial data. This improves the results obtained by Bekiranov, Ogawa and Ponce (1998). Moreover, we prove C-2-ill-posedness at low-regularity, and also when the difference of regularity between the initial data is large enough. As far as we know, this last ill-posedness result is the first of this kind for a nonlinear dispersive system. Finally, we also prove that the local well-posedness result obtained by Pecher (2006) in the resonant case (vertical bar nu vertical bar = 1) is sharp except for the end-point.
引用
收藏
页码:31 / 54
页数:24
相关论文
共 50 条
  • [1] Sharp well-posedness for the Benjamin–Ono equation
    Rowan Killip
    Thierry Laurens
    Monica Vişan
    Inventiones mathematicae, 2024, 236 : 999 - 1054
  • [2] GLOBAL WELL-POSEDNESS AND NON-LINEAR STABILITY OF PERIODIC TRAVELING WAVES FOR A SCHRODINGER-BENJAMIN-ONO SYSTEM
    Angulo, Jaime
    Matheus, Carlos
    Pilod, Didier
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2009, 8 (03) : 815 - 844
  • [3] Sharp well-posedness for the Benjamin-Ono equation
    Killip, Rowan
    Laurens, Thierry
    Visan, Monica
    INVENTIONES MATHEMATICAE, 2024, 236 (03) : 999 - 1054
  • [4] SHARP WELL-POSEDNESS FOR THE BENJAMIN-ONO EQUATION
    Killip, Rowan
    Laurens, Thierry
    Vişan, Monica
    arXiv, 2023,
  • [5] SHARP WELL-POSEDNESS RESULTS FOR THE GENERALIZED BENJAMIN-ONO EQUATION WITH HIGH NONLINEARITY
    Vento, Stephane
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2009, 22 (5-6) : 425 - 446
  • [6] On well-posedness for the Benjamin–Ono equation
    Nicolas Burq
    Fabrice Planchon
    Mathematische Annalen, 2008, 340 : 497 - 542
  • [7] INVARIANCE OF THE GIBBS MEASURE FOR THE SCHRODINGER-BENJAMIN-ONO SYSTEM
    Oh, Tadahiro
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2010, 41 (06) : 2207 - 2225
  • [8] On well-posedness for the Benjamin-Ono equation
    Burq, Nicolas
    Planchon, Fabrice
    MATHEMATISCHE ANNALEN, 2008, 340 (03) : 497 - 542
  • [9] Sharp well-posedness for the Benjamin equation
    Chen, W.
    Guo, Z.
    Xiao, J.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (17) : 6209 - 6230
  • [10] WELL-POSEDNESS AND ILL-POSEDNESS RESULTS FOR DISSIPATIVE BENJAMIN-ONO EQUATIONS
    Vento, Stephane
    OSAKA JOURNAL OF MATHEMATICS, 2011, 48 (04) : 933 - 958