Upper and lower bounds of stochastic resonance and noise-induced synchronization in a bistable oscillator

被引:1
|
作者
Kovaleva, Agnessa [1 ]
机构
[1] Russian Acad Sci, Inst Space Res, Moscow 117997, Russia
来源
PHYSICAL REVIEW E | 2006年 / 74卷 / 01期
关键词
D O I
10.1103/PhysRevE.74.011126
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
This paper discusses concepts of stochastic resonance and noise-induced synchronization in a bistable oscillator subject to both periodic signal and noise. We demonstrate that stochastic resonance is not directly correlated with the matching of the signal frequency and the switching rate. The phenomena of stochastic resonance and noise-induced synchronization are the limiting cases of noise-induced transitions, and the spectral response heavily depends on the input signal-to-noise ratio. The lower and upper bounds of noise intensity allowing synchronization are found as functions of the system's parameters. (c) 2006 American Institute of Physics.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Noise-induced synchronization and stochastic resonance in a bistable system
    Kovaleva, A
    IUTAM SYMPOSIUM ON CHAOTIC DYNAMICS AND CONTROL OF SYSTEMS AND PROCESSES IN MECHANICS, 2005, 122 : 345 - 353
  • [2] Synchronization and stochastic resonance of noise-induced jumps in a bistable system
    Kovaleva, A
    2003 INTERNATIONAL CONFERENCE PHYSICS AND CONTROL, VOLS 1-4, PROCEEDINGS: VOL 1: PHYSICS AND CONTROL: GENERAL PROBLEMS AND APPLICATIONS; VOL 2: CONTROL OF OSCILLATIONS AND CHAOS; VOL 3: CONTROL OF MICROWORLD PROCESSES. NANO- AND FEMTOTECHNOLOGIES; VOL 4: NONLINEAR DYNAMICS AND CONTROL, 2003, : 372 - 377
  • [3] Stochastic resonance and noise-induced synchronization
    Freund, JA
    Neiman, AB
    Schimansky-Geier, L
    STOCHASTIC AND CHAOTIC DYNAMICS IN THE LAKES, 2000, 502 : 422 - 427
  • [4] Levy noise-induced stochastic resonance in a bistable system
    Xu, Yong
    Li, Juanjuan
    Feng, Jing
    Zhang, Huiqing
    Xu, Wei
    Duan, Jinqiao
    EUROPEAN PHYSICAL JOURNAL B, 2013, 86 (05):
  • [5] Lévy noise-induced stochastic resonance in a bistable system
    Yong Xu
    Juanjuan Li
    Jing Feng
    Huiqing Zhang
    Wei Xu
    Jinqiao Duan
    The European Physical Journal B, 2013, 86
  • [6] Optimization of noise-induced synchronization of oscillator networks
    Kawamura, Yoji
    Nakao, Hiroya
    PHYSICAL REVIEW E, 2016, 94 (03)
  • [7] Noise-induced synchronization stochastic resonance in Hodgkin-Huxley neurons
    Shi, Peiming
    Wang, Yuchang
    Zhang, Wenyue
    Li, Mengdi
    Song, Tao
    MODERN PHYSICS LETTERS B, 2022, 36 (23):
  • [8] Pinning noise-induced stochastic resonance
    Tang, Yang
    Gao, Huijun
    Zou, Wei
    Kurths, Juergen
    PHYSICAL REVIEW E, 2013, 87 (06)
  • [9] Noise-induced resonance at the subharmonic frequency in bistable systems
    Yang, J. H.
    Sanjuan, Miguel A. F.
    Liu, H. G.
    Zhu, H.
    NONLINEAR DYNAMICS, 2017, 87 (03) : 1721 - 1730
  • [10] Noise-induced resonance at the subharmonic frequency in bistable systems
    J. H. Yang
    Miguel A. F. Sanjuán
    H. G. Liu
    H. Zhu
    Nonlinear Dynamics, 2017, 87 : 1721 - 1730