Structure of V2O5•nH2O Xerogels

被引:76
|
作者
Kristoffersen, Henrik H. [1 ]
Metiu, Horia [1 ]
机构
[1] Univ Calif Santa Barbara, Dept Chem & Biochem, Santa Barbara, CA 93106 USA
来源
JOURNAL OF PHYSICAL CHEMISTRY C | 2016年 / 120卷 / 07期
关键词
GENERALIZED GRADIENT APPROXIMATION; INITIO MOLECULAR-DYNAMICS; TOTAL-ENERGY CALCULATIONS; LAYERED STRUCTURES; CATALYSIS SCIENCE; VANADIUM; NANOCOMPOSITES;
D O I
10.1021/acs.jpcc.5b12418
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Vanadium oxide is a layered compound that forms V2O5 center dot nH(2)O xerogel when intercalated by water. The xerogel consists of V2O5 bilayers with water between them. The structure of each V2O5 layer in the bilayer is close to the structure of a single layer in bulk V2O5. However, the distance between the two layers in the bilayer is much smaller than the t distance between single layers in the bulk. The xerogel is a Bronsted acid that has been used as an acid catalyst and whose protons are mobile and can be exchanged with other cations. Here, we use density functional theory to examine five possible models for the structure of the xerogel. In the model that has the properties established by experiments, the vanadyl groups in the two layers point toward the outside of the bilayer, while in the bulk V2O5 they point toward the space between layers. This change in the vanadyl positions allows the two layers to get unusually close to each other. This structure is unstable in the absence of water. Water stabilizes it by reacting with bilayers to form two H3O+ ions and one oxygen atom that bridges two vanadium atoms. It is this reaction that confers acidity to the gel.
引用
收藏
页码:3986 / 3992
页数:7
相关论文
共 50 条
  • [1] Nanocomposites with the layered structure of V2O5 · nH2O xerogel
    V. L. Volkov
    G. S. Zakharova
    L. A. Perelyaeva
    Russian Journal of Inorganic Chemistry, 2006, 51 : 41 - 45
  • [2] Nanocomposites with the layered structure of V2O5•nH2O xerogel
    Volkov, V. L.
    Zakharova, G. S.
    Perelyaeva, L. A.
    RUSSIAN JOURNAL OF INORGANIC CHEMISTRY, 2006, 51 (01) : 41 - 45
  • [3] V2O5•nH2O crystalline nanosheets:: Hydrothermal fabrication and structure evolution
    Hu, Xiao Kai
    Ma, De Kun
    Liang, Jian Bo
    Xiong, Sheng Lin
    Li, Jiang Ying
    Qian, Yi Tai
    CHEMISTRY LETTERS, 2007, 36 (04) : 560 - 561
  • [4] Water adsorption on α-V2O5 surface and absorption in V2O5•nH2O xerogel: DFT study of electronic structure
    Porsev, Vitaly V.
    Bandura, Andrei V.
    Evarestov, Robert A.
    SURFACE SCIENCE, 2017, 666 : 76 - 83
  • [5] Bilayered Nanostructured V2O5•nH2O for Metal Batteries
    Moretti, Arianna
    Passerini, Stefano
    ADVANCED ENERGY MATERIALS, 2016, 6 (23)
  • [6] Liquid crystal behavior of V2O5•nH2O gels
    Livage, J
    Davidson, P
    Commeinhes, X
    Pelletier, O
    SOLID-STATE CHEMISTRY OF INORGANIC MATERIALS II, 1999, 547 : 363 - 368
  • [7] Electrochromic and conductivity properties:: a comparative study between melanin-like/V2O5•nH2O and polyaniline/V2O5•nH2O hybrid materials
    Oliveira, HP
    Graeff, CFO
    Brunello, CA
    Guerra, EM
    JOURNAL OF NON-CRYSTALLINE SOLIDS, 2000, 273 (1-3) : 193 - 197
  • [8] Synthesis, characterization and electrochemical properties of the V2O5•nH2O/AlO(OH)•nH2O xerogel composite
    Zampronio, EC
    Lassali, TAF
    Oliveira, HP
    ELECTROCHIMICA ACTA, 2005, 51 (02) : 257 - 267
  • [9] Field emission from V2O5•nH2O nanorod Arrays
    Chen, Wen
    Zhou, Chiwei
    Mai, Liqiang
    Liu, Yueli
    Qi, Yanyuan
    Dai, Ying
    JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (07): : 2262 - 2265
  • [10] Structure of V2O5•nH2O xerogel solved by the atomic pair distribution function technique
    Petkov, V
    Trikalitis, PN
    Bozin, ES
    Billinge, SJL
    Vogt, T
    Kanatzidis, MG
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2002, 124 (34) : 10157 - 10162