We study the regularity of refinable functions by analyzing the spectral properties of special operators associated to the refinement equation; in particular, we use the Fredholm determinant theory to derive numerical estimates for the spectral radius of these operators in certain spaces. This new technique is particularly useful for estimating the regularity in the cases where the refinement equation has an infinite number of nonzero coefficients and in the multidimensional cases.
机构:
Michigan State Univ, Dept Math, E Lansing, MI 48824 USAChinese Acad Sci, Acad Math & Syst Sci, Inst Comp Math, LSEC, Beijing 100091, Peoples R China
Wang, Yang
Xu, Zhiqiang
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Acad Math & Syst Sci, Inst Comp Math, LSEC, Beijing 100091, Peoples R ChinaChinese Acad Sci, Acad Math & Syst Sci, Inst Comp Math, LSEC, Beijing 100091, Peoples R China
机构:Centre de Recherche de Mathematiques de la Decision URA CNRS No. 749 University de Paris—Dauphine Place du Marechal de Lattre de Tassigny,Department of Mathematics
A. Cohen
K. Gröchenig
论文数: 0引用数: 0
h-index: 0
机构:Centre de Recherche de Mathematiques de la Decision URA CNRS No. 749 University de Paris—Dauphine Place du Marechal de Lattre de Tassigny,Department of Mathematics
K. Gröchenig
L. F. Villemoes
论文数: 0引用数: 0
h-index: 0
机构:Centre de Recherche de Mathematiques de la Decision URA CNRS No. 749 University de Paris—Dauphine Place du Marechal de Lattre de Tassigny,Department of Mathematics