Utilizing Syndromic Surveillance Data for Estimating Levels of Influenza Circulation

被引:19
|
作者
Patterson-Lomba, Oscar [1 ]
Van Noort, Sander [4 ]
Cowling, Benjamin J. [5 ]
Wallinga, Jacco [6 ]
Gomes, M. Gabriela M. [4 ]
Lipsitch, Marc [2 ,3 ]
Goldstein, Edward [2 ]
机构
[1] Arizona State Univ, Sch Human Evolut & Social Change, Math Computat & Modeling Sci Ctr, Tempe, AZ USA
[2] Harvard Univ, Sch Publ Hlth, Ctr Communicable Dis Dynam, Dept Epidemiol, Boston, MA 02115 USA
[3] Harvard Univ, Sch Publ Hlth, Dept Immunol & Infect Dis, Boston, MA 02115 USA
[4] Gulbenkian Inst Sci, Oeiras, Portugal
[5] Univ Hong Kong, Li Ka Shing Fac Med, Sch Publ Hlth, Hong Kong, Hong Kong, Peoples R China
[6] Natl Inst Publ Hlth & Environm, Ctr Infect Dis Control, NL-3720 BA Bilthoven, Netherlands
基金
美国国家卫生研究院;
关键词
attack rate; influenza; influenza-like illness; participatory surveillance; GENERAL-POPULATION; ILLNESS; NETHERLANDS; TRANSMISSION; HOUSEHOLDS; INFECTION; TECUMSEH; IMPACT;
D O I
10.1093/aje/kwu061
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
The availability of weekly Web-based participatory surveillance data on self-reported influenza-like illness (ILI), defined here as self-reported fever and cough/sore throat, over several influenza seasons allows for estimation of the incidence of influenza infection in population cohorts. We demonstrate this using syndromic data reported through the Influenzanet surveillance platform in the Netherlands. We used the 2011-2012 influenza season, a low-incidence season that began late, to assess the baseline rates of self-reported ILI during periods of low influenza circulation, and we used ILI rates above that baseline level from the 2012-1013 season, a major influenza season, to estimate influenza attack rates for that period. The latter conversion required estimates of age-specific probabilities of self-reported ILI given influenza (Flu) infection (P(ILI | Flu)), which were obtained from separate data (extracted from Hong Kong, China, household studies). For the 2012-2013 influenza season in the Netherlands, we estimated combined influenza A/B attack rates of 29.2% (95% credible interval (CI): 21.6, 37.9) among survey participants aged 20-49 years, 28.3% (95% CI: 20.7, 36.8) among participants aged 50-60 years, and 5.9% (95% CI: 0.4, 11.8) among participants aged a parts per thousand yen61 years. Estimates of influenza attack rates can be obtained in other settings using analogous, multiseason surveillance data on self-reported ILI together with separate, context-specific estimates of P(ILI | Flu).
引用
收藏
页码:1394 / 1401
页数:8
相关论文
共 50 条
  • [1] Utilizing Wearable Device Data for Syndromic Surveillance: A Fever Detection Approach
    Kasl, Patrick
    Bruce, Lauryn Keeler
    Hartogensis, Wendy
    Dasgupta, Subhasis
    Pandya, Leena S.
    Dilchert, Stephan
    Hecht, Frederick M.
    Gupta, Amarnath
    Altintas, Ilkay
    Mason, Ashley E.
    Smarr, Benjamin L.
    SENSORS, 2024, 24 (06)
  • [2] Participatory Syndromic Surveillance of Influenza in Europe
    Guerrisi, Caroline
    Turbelin, Clement
    Blanchon, Thierry
    Hanslik, Thomas
    Bonmarin, Isabelle
    Levy-Bruhl, Daniel
    Perrotta, Daniela
    Paolotti, Daniela
    Smallenburg, Ronald
    Koppeschaar, Carl
    Franco, Ana O.
    Mexia, Ricardo
    Edmunds, W. John
    Sile, Bersabeh
    Pebody, Richard
    van Straten, Edward
    Meloni, Sandro
    Moreno, Yamir
    Duggan, Jim
    Kjelso, Charlotte
    Colizza, Vittoria
    JOURNAL OF INFECTIOUS DISEASES, 2016, 214 : S386 - S392
  • [3] Emergency department and 'Google flu trends' data as syndromic surveillance indicators for seasonal influenza
    Thompson, L. H.
    Malik, M. T.
    Gumel, A.
    Strome, T.
    Mahmud, S. M.
    EPIDEMIOLOGY AND INFECTION, 2014, 142 (11): : 2397 - 2405
  • [4] Estimating influenza vaccine effectiveness in Spain using sentinel surveillance data
    Jimenez-Jorge, S.
    de Mateo, S.
    Delgado-Sanz, C.
    Pozo, F.
    Casas, I.
    Garcia-Cenoz, M.
    Castilla, J.
    Rodriguez, C.
    Vega, T.
    Quinones, C.
    Martinez, E.
    Vanrell, J. M.
    Gimenez, J.
    Castrillejo, D.
    Altzibar, J. M.
    Carril, F.
    Ramos, J. M.
    Serrano, M. C.
    Martinez, A.
    Torner, N.
    Perez, E.
    Gallardo, V.
    Larrauri, A.
    EUROSURVEILLANCE, 2015, 20 (28)
  • [5] Syndromic surveillance in companion animals utilizing electronic medical records data: development and proof of concept
    Kass, Philip H. .
    Weng, Hsin-Yi
    Gaona, Mark A. L.
    Hille, Amy
    Sydow, Max H.
    Lund, Elizabeth M.
    Markwell, Peter J.
    PEERJ, 2016, 4
  • [6] Local implementation of a syndromic influenza surveillance system using emergency department data in Santander, Spain
    Schrell, S.
    Ziemann, A.
    Garcia-Castrillo Riesgo, L.
    Rosenkotter, N.
    Llorca, J.
    Popa, D.
    Krafft, T.
    JOURNAL OF PUBLIC HEALTH, 2013, 35 (03) : 397 - 403
  • [7] Syndromic surveillance of influenza activity in Sweden: an evaluation of three tools
    Ma, T.
    Englund, H.
    Bjelkmar, P.
    Wallensten, A.
    Hulth, A.
    EPIDEMIOLOGY AND INFECTION, 2015, 143 (11): : 2390 - 2398
  • [8] Syndromic Surveillance for Influenza in the Emergency Department-A Systematic Review
    Hiller, Katherine M.
    Stoneking, Lisa
    Min, Alice
    Rhodes, Suzanne Michelle
    PLOS ONE, 2013, 8 (09):
  • [9] Timeliness of syndromic influenza surveillance through work and school absenteeism
    Bollaerts K.
    Antoine J.
    Robesyn E.
    van Proeyen L.
    Vomberg J.
    Feys E.
    de Decker E.
    Catry B.
    Archives of Public Health, 68 (3) : 115 - 120
  • [10] Syndromic surveillance for influenza in Tianjin, China: 2013-14
    Dong, X.
    Boulton, M. L.
    Carlson, B.
    Montgomery, J. P.
    Wells, E. V.
    JOURNAL OF PUBLIC HEALTH, 2017, 39 (02) : 274 - 281