Anti-field formalism and non-Abelian duality

被引:6
|
作者
Hodges, PJ [1 ]
Mohammedi, N [1 ]
机构
[1] UNIV TOURS,F-37200 TOURS,FRANCE
关键词
D O I
10.1016/S0370-2693(96)01210-5
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The act of implementing non-Abelian duality in two dimensional sigma models results unavoidably in an additional reducible symmetry. The Batalin-Vilkovisky formalism is employed to handle this new symmetry. Valuable lessons are learnt here with respect to non-Abelian duality. We emphasise, in particular, the effects of the ghost sector corresponding to this symmetry on non-Abelian duality.
引用
收藏
页码:761 / 768
页数:8
相关论文
共 50 条
  • [1] ON NON-ABELIAN DUALITY
    ALVAREZ, E
    ALVAREZGAUME, L
    LOZANO, Y
    NUCLEAR PHYSICS B, 1994, 424 (01) : 155 - 183
  • [2] On geometry of non-abelian duality
    Severa, P
    NONCOMMUTATIVE DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS TO PHYSICS, PROCEEDINGS, 2001, 23 : 217 - 226
  • [3] NON-ABELIAN PONTRIAGIN DUALITY
    AKEMANN, CA
    WALTER, ME
    DUKE MATHEMATICAL JOURNAL, 1972, 39 (03) : 451 - &
  • [4] REMARKS ON NON-ABELIAN DUALITY
    ELITZUR, S
    GIVEON, A
    RABINOVICI, E
    SCHWIMMER, A
    VENEZIANO, G
    NUCLEAR PHYSICS B, 1995, 435 (1-2) : 147 - 171
  • [5] A PROBLEM WITH NON-ABELIAN DUALITY
    GASPERINI, M
    RICCI, R
    VENEZIANO, G
    PHYSICS LETTERS B, 1993, 319 (04) : 438 - 444
  • [6] Non-abelian duality for open strings
    Forste, S
    Kehagias, AA
    Schwager, S
    NUCLEAR PHYSICS B, 1996, 478 (1-2) : 141 - 155
  • [7] A solution to the non-Abelian duality problem
    Cobanera, E.
    Ortiz, G.
    Knill, E.
    NUCLEAR PHYSICS B, 2013, 877 (02) : 574 - 597
  • [8] DUALITY FOR NON-ABELIAN LATTICE FIELDS
    ORLAND, P
    NUCLEAR PHYSICS B, 1980, 163 (03) : 275 - 288
  • [9] On non-Abelian duality in sigma models
    Mohammedi, N
    PHYSICS LETTERS B, 1996, 375 (1-4) : 149 - 153
  • [10] Non-Abelian duality, parafermions, and supersymmetry
    Sfetsos, K
    PHYSICAL REVIEW D, 1996, 54 (02): : 1682 - 1695