Principal component regression for data containing outliers and missing elements

被引:23
|
作者
Serneels, Sven [2 ]
Verdonck, Tim [1 ]
机构
[1] Univ Antwerp, Dept Math & Comp Sci, Agoras Grp, B-2020 Antwerp, Belgium
[2] LS Serv & Consultancy, Edegem, Belgium
关键词
MULTIVARIATE REGRESSION; ROBUST; ESTIMATOR; PROJECTION; INFERENCE;
D O I
10.1016/j.csda.2009.04.008
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A methodology is presented to construct an expectation robust algorithm for principal component regression. The presented method is the first multivariate regression method which can resist outliers and which can cope with missing elements in the data simultaneously. Simulations and an example illustrate the good statistical properties of the method. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:3855 / 3863
页数:9
相关论文
共 50 条
  • [1] Principal component analysis for data containing outliers and missing elements
    Serneels, Sven
    Verdonck, Tim
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2008, 52 (03) : 1712 - 1727
  • [2] Principal component analysis of dissolution data with missing elements
    Adams, E
    Walczak, B
    Vervaet, C
    Risha, PG
    Massart, DL
    INTERNATIONAL JOURNAL OF PHARMACEUTICS, 2002, 234 (1-2) : 169 - 178
  • [3] Robust Logistic Principal Component Regression for Classification of Data in presence of Outliers
    Wu, H. C.
    Chan, S. C.
    Tsui, K. M.
    2012 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS 2012), 2012,
  • [4] Dealing with missing values and outliers in principal component analysis
    Stanimirova, I.
    Daszykowski, M.
    Walczak, B.
    TALANTA, 2007, 72 (01) : 172 - 178
  • [5] Classification of data with missing elements and outliers
    Stanimirova, I.
    Walczak, B.
    TALANTA, 2008, 76 (03) : 602 - 609
  • [6] Principal component analysis for compositional data with outliers
    Filzmoser, Peter
    Hron, Karel
    Reimann, Clemens
    ENVIRONMETRICS, 2009, 20 (06) : 621 - 632
  • [7] Exploratory analysis of data sets with missing elements and outliers
    Smolinski, A
    Walczak, B
    Einax, JW
    CHEMOSPHERE, 2002, 49 (03) : 233 - 245
  • [8] Principal Component Analysis with Noisy and/or Missing Data
    Bailey, Stephen
    PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC, 2012, 124 (919) : 1015 - 1023
  • [9] RECONSTRUCTION OF MISSING DATA IN PRINCIPAL COMPONENT ANALYSIS
    CONDON, PE
    NUCLEAR INSTRUMENTS & METHODS, 1977, 146 (03): : 611 - 612
  • [10] Mixture robust semi-supervised probabilistic principal component regression with missing input data
    Memarian, Alireza
    Varanasi, Santhosh Kumar
    Huang, Biao
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2021, 214