Vegetation greening and climate change promote an increase in evapotranspiration across Siberia

被引:20
|
作者
Shi, Shangyu [1 ,2 ]
Wang, Ping [1 ,2 ]
Yu, Jingjie [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Geog Sci & Nat Resources Res, Key Lab Water Cycle & Related Land Surface Proc, Beijing 100101, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
Evapotranspiration; Vegetation greening; Climate change; Siberia; GLOBAL WATER CYCLE; SAP FLOW; PERMAFROST; ENERGY; TEMPERATURE; EVAPORATION; HYDROLOGY; PATTERNS; MOISTURE; TRENDS;
D O I
10.1016/j.jhydrol.2022.127965
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The greening of the Arctic and pan-Arctic regions in recent decades has been widely confirmed, while the details regarding the greening feedback effects involving the water and energy cycles are still vague. Evapotranspiration (ET), a vital process in the water and energy cycles, strongly corresponds to vegetation activities. Hence, in this study, we chose Siberia as the study area and, based on the Penman-Monteith-Leuning (PML) model, revealed the contribution of greening to ET. Moreover, the effects of the water vapour pressure deficit, surface net radiation (Rn) and wind speed (Um) on ET were evaluated. The results indicated that from 2000 to 2020, the annual ET in Siberia was 248.2 +/- 94.1 mm, and the trend was 0.54 +/- 1.38 mm/a. Greening was the major driver of ET variations; its contribution was 0.79 +/- 0.76 mm/a, and its relative contribution was 37%. Among the other analysed climate factors, ET was sensitive to R-n and U-m these factors contributed 0.51 +/- 0.85 mm/a and -0.38 +/- 0.54 mm/a, respectively, to ET variation, and their relative contributions were 33% and 19%, respectively. The effect of the water vapour pressure deficit was slight (0.29 +/- 0.22 mm/a, 11%), indicating that ET was hardly constrained by the water supply in Siberia. These results quantify the importance of greening on ET variations and highlight the important effects of R-n and U-m on ET in cold region terrestrial ecosystems. Furthermore, this study improves our understanding of the mechanism by which evapotranspiration varies and is valuable for predicting and evaluating the Arctic water cycle in "Arctic amplification".;
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Climate Change and Vegetation Greening Jointly Promote the Increase in Evapotranspiration in the Jing River Basin
    Yao, Luoyi
    Wu, Rong
    Wang, Zijun
    Xue, Tingyi
    Liu, Yangyang
    Hu, Ercha
    Wen, Zhongming
    Shi, Haijing
    Yang, Jiaqi
    Han, Peidong
    Zhao, Yinghan
    Hu, Jingyao
    AGRONOMY-BASEL, 2024, 14 (09):
  • [2] Vegetation Greening and Climate Change Promote Multidecadal Rises of Global Land Evapotranspiration
    Zhang, Ke
    Kimball, John S.
    Nemani, Ramakrishna R.
    Running, Steven W.
    Hong, Yang
    Gourley, Jonathan J.
    Yu, Zhongbo
    SCIENTIFIC REPORTS, 2015, 5
  • [3] Vegetation Greening and Climate Change Promote Multidecadal Rises of Global Land Evapotranspiration
    Ke Zhang
    John S. Kimball
    Ramakrishna R. Nemani
    Steven W. Running
    Yang Hong
    Jonathan J. Gourley
    Zhongbo Yu
    Scientific Reports, 5
  • [4] Separating Vegetation Greening and Climate Change Controls on Evapotranspiration trend over the Loess Plateau
    Zhao Jin
    Wei Liang
    Yuting Yang
    Weibin Zhang
    Jianwu Yan
    Xuejuan Chen
    Sha Li
    Xingguo Mo
    Scientific Reports, 7
  • [5] Separating Vegetation Greening and Climate Change Controls on Evapotranspiration trend over the Loess Plateau
    Jin, Zhao
    Liang, Wei
    Yang, Yuting
    Zhang, Weibin
    Yan, Jianwu
    Chen, Xuejuan
    Li, Sha
    Mo, Xingguo
    SCIENTIFIC REPORTS, 2017, 7
  • [6] The role of climate change and vegetation greening on evapotranspiration variation in the Yellow River Basin, China
    Zhao, Fubo
    Ma, Shuai
    Wu, Yiping
    Qiu, Linjing
    Wang, Wenke
    Lian, Yanqing
    Chen, Ji
    Sivakumar, Bellie
    AGRICULTURAL AND FOREST METEOROLOGY, 2022, 316
  • [7] The Effects of Climate Change and Greening of Vegetation on Spatiotemporal Variation of Evapotranspiration in the Haihe River Basin, China
    Chen, Yang
    Chai, Se
    Chen, Wenjie
    Xia, Jiangzhou
    ECOLOGY AND EVOLUTION, 2025, 15 (03):
  • [8] Trends in evapotranspiration and their responses to climate change and vegetation greening over the upper reaches of the Yellow River Basin
    Xu, Shiqin
    Yu, Zhongbo
    Yang, Chuanguo
    Ji, Xibin
    Zhang, Ke
    AGRICULTURAL AND FOREST METEOROLOGY, 2018, 263 : 118 - 129
  • [9] The role of climate change and vegetation greening on the variation of terrestrial evapotranspiration in northwest China's Qilian Mountains
    Yang, Linshan
    Feng, Qi
    Adamowski, Jan F.
    Alizadeh, Mohammad Reza
    Yin, Zhenliang
    Wen, Xiaohu
    Zhu, Meng
    SCIENCE OF THE TOTAL ENVIRONMENT, 2021, 759
  • [10] Climate change and topographic differences influence grassland vegetation greening across environmental gradients
    Xun, Qilei
    An, Shazhou
    Lu, Mingzhi
    FRONTIERS IN ENVIRONMENTAL SCIENCE, 2024, 11