Bose-Einstein Condensates and Multi-Component NLS Models on Symmetric Spaces of BD.I-Type. Expansions over Squared Solutions

被引:2
|
作者
Gerdjikov, V. S. [1 ]
Kaup, D. J. [2 ]
Kostov, N. A. [1 ]
Valchev, T. I. [1 ]
机构
[1] Bulgarian Acad Sci, Inst Nucl Res & Nucl Energy, 72 Tsarigradsko Chaussee, BU-1784 Sofia, Bulgaria
[2] Univ Cent Florida, Dept Math, Orlando, FL 32816 USA
来源
NONLINEAR SCIENCE AND COMPLEXITY | 2011年
基金
美国国家科学基金会;
关键词
Multicomponent nonlinear Schrodinger equations; Inverse scattering method; Generalized Fourier transform; EQUATIONS;
D O I
10.1007/978-90-481-9884-9_23
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A special class of multicomponent NLS equations, generalizing the vector NLS and related to the BD.I-type symmetric are shown to be integrable through the inverse scattering method (ISM). The corresponding fundamental analytic solutions are constructed thus reducing the inverse scattering problem to a RiemannHilbert problem. We introduce the minimal sets of scattering data T which determines uniquely the scattering matrix and the potential Q of the Lax operator. The elements of T can be viewed as the expansion coefficients of Q over the 'squared solutions' that are natural generalizations of the standard exponentials. Thus we demonstrate that the mapping T -> Q is a generalized Fourier transform. Special attention is paid to two special representatives of this MNLS with three-component and five components which describe spinor (F = 1 and F = 2, respectively) BoseEinstein condensates.
引用
收藏
页码:181 / 188
页数:8
相关论文
共 14 条
  • [1] Solutions of multi-component NLS models and Spinor Bose-Einstein condensates
    Gerdjikov, V. S.
    Kostov, N. A.
    Valchev, T. I.
    PHYSICA D-NONLINEAR PHENOMENA, 2009, 238 (15) : 1306 - 1310
  • [2] On Reductions of Soliton Solutions of Multi-component NLS Models and Spinor Bose-Einstein Condensates
    Gerdjikov, V. S.
    APPLICATION OF MATHEMATICS IN TECHNICAL AND NATURAL SCIENCES, 2009, 1186 : 15 - 27
  • [3] Dynamics of periodic multi-component Bose-Einstein condensates
    Deconinck, B
    Kutz, JN
    Patterson, MS
    Warner, BW
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (20): : 5431 - 5447
  • [4] Phase separation of multi-component Bose-Einstein condensates in optical lattices
    Kuo, Yuen-Cheng
    Shieh, Shih-Feng
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 347 (02) : 521 - 533
  • [5] Two-Dimensional Soliton Interaction for Multi-component Bose-Einstein Condensates
    LI Sheng-Chang DUAN Wen-Shan College of Physics and Electronic Engineering
    Communications in Theoretical Physics, 2008, 50 (09) : 655 - 660
  • [6] Fixed point methods for energy states of multi-component Bose-Einstein condensates
    Chang, SM
    Lin, WW
    Shieh, SF
    ICNAAM 2004: INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2004, 2004, : 81 - 83
  • [7] Two-dimensional soliton interaction for multi-component Bose-Einstein condensates
    Li Sheng-Chang
    Duan Wen-Shan
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2008, 50 (03) : 655 - 660
  • [8] Multi-parameter continuation and collocation methods for rotating multi-component Bose-Einstein condensates
    Chen, S-Y
    Wang, Y-S
    Jeng, B-W
    Chien, C-S
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2015, 92 (04) : 850 - 871
  • [9] Dark-dark soliton breathing patterns in multi-component Bose-Einstein condensates
    Wang, Wenlong
    Zhao, Li-Chen
    Charalampidis, Efstathios G.
    Kevrekidis, Panayotis G.
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2021, 54 (05)
  • [10] Multi-Component NLS Models on Symmetric Spaces: Spectral Properties versus Representations Theory
    Gerdjikov, Vladimir S.
    Grahovski, Georgi G.
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2010, 6