Spline approximations on manifolds

被引:1
|
作者
Demyanovich, Yu. K. [1 ]
机构
[1] St Petersburg State Univ, St Petersburg, Russia
关键词
spline; local approximation; finite element method; smooth manifold; simplicial subdivision; evaluation of convergence; inequality of stability;
D O I
10.1142/S0219691306001324
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
A method of construction of the local approximations in the case of functions defined on n-dimensional (n >= 1) smooth manifold with boundary is proposed. In particular, spline and finite-element methods on manifold are discussed. Nondegenerate simplicial subdivision of the manifold is introduced and a simple method for evaluations of approach is examined (the evaluations axe optimal as to N-width of corresponding compact set).
引用
收藏
页码:383 / 403
页数:21
相关论文
共 50 条
  • [1] Differentiable Spline Approximations
    Cho, Minsu
    Balu, Aditya
    Joshi, Ameya
    Prasad, Anjana Deva
    Khara, Biswajit
    Sarkar, Soumik
    Ganapathysubramanian, Baskar
    Krishnamurthy, Adarsh
    Hegde, Chinmay
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [2] Hierarchical spline approximations
    Wiley, DF
    Bertram, M
    Jordan, BW
    Hamann, B
    Joy, KI
    Max, NL
    Scheuermann, G
    HIERARCHICAL AND GEOMETRICAL METHODS IN SCIENTIFIC VISUALIZATION, 2003, : 63 - 88
  • [3] BIQUADRATIC SPLINE APPROXIMATIONS
    SAKAI, M
    USMANI, RA
    PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 1984, 20 (03) : 431 - 446
  • [4] CONVERSION THEOREMS FOR SPLINE APPROXIMATIONS
    NITSCHE, J
    COMPOSITIO MATHEMATICA, 1969, 21 (04) : 400 - &
  • [5] Generation of Spline Approximations to Tessellations
    Darmenhoffer, John F., III
    Haimes, Robert
    PROCEEDINGS OF THE 17TH INTERNATIONAL MESHING ROUNDTABLE, 2008, : 249 - +
  • [6] ALTERNATION FOR BEST SPLINE APPROXIMATIONS
    NURNBERGER, G
    SOMMER, M
    NUMERISCHE MATHEMATIK, 1983, 41 (02) : 207 - 221
  • [7] The Unimodality of Initial B-Spline Approximations in Spline Fitting
    Yong, Zhiguo
    Kang, Hongmei
    Yang, Zhouwang
    Gu, Yi
    COMMUNICATIONS IN MATHEMATICS AND STATISTICS, 2022, 10 (02) : 331 - 352
  • [8] The Unimodality of Initial B-Spline Approximations in Spline Fitting
    Zhiguo Yong
    Hongmei Kang
    Zhouwang Yang
    Yi Gu
    Communications in Mathematics and Statistics, 2022, 10 : 331 - 352
  • [9] Globally optimal univariate spline approximations
    Mohr, Robert
    Coblenz, Maximilian
    Kirst, Peter
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2023, 85 (02) : 409 - 439
  • [10] Globally optimal univariate spline approximations
    Robert Mohr
    Maximilian Coblenz
    Peter Kirst
    Computational Optimization and Applications, 2023, 85 : 409 - 439