Equations with Solution in Terms of Fibonacci and Lucas Sequences

被引:4
|
作者
Andreescu, Titu [1 ]
Andrica, Dorin. [2 ]
机构
[1] Univ Texas Dallas, Sch Nat Sci & Math, Richardson, TX 75080 USA
[2] Univ Babes Bolyai, Fac Math & Comp Sci, R-3400 Cluj Napoca, Romania
关键词
special Pell's equation; negative special Pell's equation; Fibonacci and Lucas sequences; DIOPHANTINE REPRESENTATION; GENERALIZED FIBONACCI; NUMBERS; PELL;
D O I
10.2478/auom-2014-0046
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The main results characterize the equations (2.1) and (2.10) whose solutions are linear combinations with rational coefficients of at most two terms of classical Fibonacci and Lucas sequences.
引用
收藏
页码:5 / 12
页数:8
相关论文
共 50 条
  • [1] ON SOME COMBINATORIAL IDENTITIES INVOLVING THE TERMS OF GENERALIZED FIBONACCI AND LUCAS SEQUENCES
    Akyuz, Zeynep
    Halici, Serpil
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2013, 42 (04): : 431 - 435
  • [2] Diophantine equations with products of consecutive terms in Lucas sequences
    Luca, F
    Shorey, TN
    JOURNAL OF NUMBER THEORY, 2005, 114 (02) : 298 - 311
  • [3] Solutions of Some Diophantine Equations in terms of Generalized Fibonacci and Lucas Numbers
    Bitim, Bahar Demirturk
    Keskin, Refik
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2019, 48 (02): : 451 - 459
  • [4] PERIODIC FIBONACCI AND LUCAS SEQUENCES
    LEWIN, M
    FIBONACCI QUARTERLY, 1991, 29 (04): : 310 - 315
  • [5] Families of Primitive Pythagorean Triples Involving Terms of Generalized Fibonacci and Lucas Sequences
    Omur, N.
    Sener, C. D.
    Koparal, S.
    JOURNAL OF MATHEMATICAL EXTENSION, 2016, 10 (04) : 45 - 59
  • [6] Solutions of Some Diophantine Equations Using Generalized Fibonacci and Lucas Sequences
    Keskin, Refik
    Demirturk, Bahar
    ARS COMBINATORIA, 2013, 111 : 161 - 179
  • [7] Diophantine equations involving the bi-periodic Fibonacci and Lucas sequences
    Ait-Amrane, Lyes
    Behloul, Djilali
    Djoumakh, Akila
    ACTA ET COMMENTATIONES UNIVERSITATIS TARTUENSIS DE MATHEMATICA, 2022, 26 (01): : 129 - 152
  • [8] Fibonacci and Lucas Differential Equations
    Erkus-Duman, Esra
    Ciftci, Hakan
    APPLICATIONS AND APPLIED MATHEMATICS-AN INTERNATIONAL JOURNAL, 2018, 13 (02): : 756 - 763
  • [9] Diophantine equations with products of consecutive terms in Lucas sequences II
    Luca, Florian
    Shorey, T. N.
    ACTA ARITHMETICA, 2008, 133 (01) : 53 - 71
  • [10] On the sequences related to Fibonacci and Lucas numbers
    Özgür, NY
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2005, 42 (01) : 135 - 151