PointPoseNet: Point Pose Network for Robust 6D Object Pose Estimation

被引:0
|
作者
Chen, Wei [1 ,2 ]
Duan, Jinming [1 ]
Basevi, Hector [1 ]
Chang, Hyung Jin [1 ]
Leonardis, Ales [1 ]
机构
[1] Univ Birmingham, Sch Comp Sci, Birmingham, W Midlands, England
[2] Natl Univ Def Technol, Sch Comp Sci, Changsha, Hunan, Peoples R China
基金
英国工程与自然科学研究理事会;
关键词
CLASSIFICATION;
D O I
10.1109/wacv45572.2020.9093272
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose a novel pipeline to estimate 6D object pose from RGB-D images of known objects present in complex scenes. The pipeline directly operates on raw point clouds extracted from RGB-D scans. Specifically, our method takes the point cloud as input and regresses the point-wise unit vectors pointing to the 3D keypoints. We then use these vectors to generate keypoint hypotheses from which the 6D object pose hypotheses are computed. Finally, we select the best 6D object pose from the hypotheses based on a proposed scoring mechanism with geometry constraints. Extensive experiments show that the proposed method is robust against the variety in object shape and appearance as well as occlusions between objects, and that our method outperforms the state-of-the-art methods on the LINEMOD and Occlusion LINEMOD datasets.
引用
收藏
页码:2813 / 2822
页数:10
相关论文
共 50 条
  • [1] A Pose Proposal and Refinement Network for Better 6D Object Pose Estimation
    Trabelsi, Ameni
    Chaabane, Mohamed
    Blanchard, Nathaniel
    Beveridge, Ross
    2021 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION WACV 2021, 2021, : 2381 - 2390
  • [2] Focal segmentation for robust 6D object pose estimation
    Ye, Yuning
    Park, Hanhoon
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (16) : 47563 - 47585
  • [3] Focal segmentation for robust 6D object pose estimation
    Yuning Ye
    Hanhoon Park
    Multimedia Tools and Applications, 2024, 83 : 47563 - 47585
  • [4] Generalizable and Accurate 6D Object Pose Estimation Network
    Fu, Shouxu
    Li, Xiaoning
    Yu, Xiangdong
    Cao, Lu
    Li, Xingxing
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2023, PT III, 2024, 14427 : 312 - 324
  • [5] Graph neural network for 6D object pose estimation
    Yin, Pengshuai
    Ye, Jiayong
    Lin, Guoshen
    Wu, Qingyao
    KNOWLEDGE-BASED SYSTEMS, 2021, 218
  • [6] On Evaluation of 6D Object Pose Estimation
    Hodan, Tomas
    Matas, Jiri
    Obdrzalek, Stephan
    COMPUTER VISION - ECCV 2016 WORKSHOPS, PT III, 2016, 9915 : 606 - 619
  • [7] 6D Pose Estimation Network in Complex Point Cloud Scenes
    Chen, Haiyong
    Li, Longteng
    Chen, Peng
    Meng, Rui
    Dianzi Yu Xinxi Xuebao/Journal of Electronics and Information Technology, 2022, 44 (05): : 1591 - 1601
  • [8] ACCURATE 6D OBJECT POSE ESTIMATION BY POSE CONDITIONED MESH RECONSTRUCTION
    Castro, Pedro
    Armagan, Anil
    Kim, Tae-Kyun
    2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 4147 - 4151
  • [9] 6D Pose Estimation Network in Complex Point Cloud Scenes
    Chen Haiyong
    Li Longteng
    Chen Peng
    Meng Rui
    JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY, 2022, 44 (05) : 1591 - 1601
  • [10] BOP: Benchmark for 6D Object Pose Estimation
    Hodan, Tomas
    Michel, Frank
    Brachmann, Eric
    Kehl, Wadim
    Buch, Anders Glent
    Kraft, Dirk
    Drost, Bertram
    Vidal, Joel
    Ihrke, Stephan
    Zabulis, Xenophon
    Sahin, Caner
    Manhardt, Fabian
    Tombari, Federico
    Kim, Tae-Kyun
    Matas, Jiri
    Rother, Carsten
    COMPUTER VISION - ECCV 2018, PT X, 2018, 11214 : 19 - 35