Repeated evolution of drag reduction at the air-water interface in diving kingfishers

被引:28
|
作者
Crandell, K. E. [1 ]
Howe, R. O. [1 ]
Falkingham, P. L. [2 ]
机构
[1] Bangor Univ, Sch Nat Sci, Bangor, Gwynedd, Wales
[2] Liverpool John Moores Univ, Sch Nat Sci, Liverpool, Merseyside, England
关键词
plunge diving; avian hydrodynamics; beak; bow wave; Alcedinidae; PLUNGE-DIVE; BODY-SIZE; BUOYANCY; DEPTH; DYNAMICS; BIRDS;
D O I
10.1098/rsif.2019.0125
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Piscivorous birds have a unique suite of adaptations to forage under the water. One method aerial birds use to catch fish is the plunge dive, wherein birds dive from a height to overcome drag and buoyancy in the water. The kingfishers are a well-known clade that contains both terrestrially foraging and plunge-diving species, allowing us to test for morphological and performance differences between foraging guilds in an evolutionary context. Diving species have narrower bills in the dorsoventral and sagittal plane and longer bills (size-corrected data, n = 71 species, p, 0.01 for all). Although these differences are confounded by phylogeny (phylogenetically corrected ANOVA for dorsoventral p = 0.26 and length p = 0.14), beak width in the sagittal plane remains statistically different (p < 0.001). We examined the effects of beak morphology on plunge performance by physically simulating dives with three-dimensional printed models of beaks coupled with an accelerometer, and through computational fluid dynamics (CFD). From physically simulated dives of bill models, diving species have lower peak decelerations, and thus enter the water more quickly, than terrestrial and mixed-foraging species (ANOVA p = 0.002), and this result remains unaffected by phylogeny (phylogenetically corrected ANOVA p = 0.05). CFD analyses confirm these trends in three representative species and indicate that the morphology between the beak and head is a key site for reducing drag in aquatic species.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Sphingomyelin at the air-water interface
    Vaknin, D
    Kelley, MS
    Ocko, BM
    JOURNAL OF CHEMICAL PHYSICS, 2001, 115 (16): : 7697 - 7704
  • [2] ON INSTABILITY OF AN AIR-WATER INTERFACE
    GANGADHA.T
    RAO, NSL
    SEETHARA.K
    INDIAN JOURNAL OF TECHNOLOGY, 1970, 8 (04): : 120 - &
  • [3] Methylglyoxal at the air-water interface
    Wren, Sumi N.
    McWilliams, Laura E.
    Valley, Nicholas A.
    Richmond, Geraldine L.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 248
  • [4] ON THE INSTABILITY OF AN AIR-WATER INTERFACE
    GANGADHARAIAH T
    LAKSHMANA RAO NS
    KSEETHARAMIAH
    1970, 8 (04): : 120 - 124
  • [5] Drag reductions and the air-water interface stability of superhydrophobic surfaces in rectangular channel flow
    Zhang, Jingxian
    Yao, Zhaohui
    Hao, Pengfei
    PHYSICAL REVIEW E, 2016, 94 (05)
  • [6] Coalescence of air bubbles at air-water interface
    Ghosh, P
    CHEMICAL ENGINEERING RESEARCH & DESIGN, 2004, 82 (A7): : 849 - 854
  • [7] Monolayers of γ-globulin at the air-water interface
    Gálvez-Ruiz, MJ
    Birdi, KS
    COLLOID AND POLYMER SCIENCE, 1999, 277 (11) : 1083 - 1086
  • [8] Stabilization of chymotrypsin at the air-water interface
    Jordan, BJ
    Hong, R
    Hill, J
    Gider, B
    Rotello, VM
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2005, 230 : U3305 - U3306
  • [9] Molecular fluctuations at the air-water interface
    Eaves, Joel
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2012, 243
  • [10] Ion partitioning at the air-water interface
    Eggimann, BL
    Siepmann, JI
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2005, 230 : U1389 - U1389