Variational procedure leading from Davidson potentials to critical point symmetries

被引:0
|
作者
Bonatsos, Dennis [1 ]
Lenis, D. [1 ]
Petrellis, D. [1 ]
机构
[1] Inst Nucl Phys NCSR, GR-15310 Athens, Greece
关键词
critical point symmetries; Z(5); Z(4) and AQOA models; Davidson potentials;
D O I
暂无
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Davidson potentials of the form beta(2) + beta(4)(0)/beta(2) are known to bridge the U(5) and SO(6) [axial prolate SU(3)] symmetries, leading to the E(5) [X(5)] critical point symmmetries, through a variational procedure in which the rate of change of various physical quantities (R-4 = E(4)/E(2) ratios, for example) is maximized. It is shown that the method also works in the Z(5) and Z(4) frameworks, bridging the limits of vibrator and rigid triaxial rotator, as well as in the framework of the Analytic Quadrupole Octupole Axially symmetric (AQOA) model, bridging the limits of vibrator and rigid axial rotator. Several monoparametric curves (curves on which the parameter value is changing along the curve, but are otherwise parameter independent) correlating various physical quantities (the 0(2)(+) bandhead to the R-4 ratio, for example) can be derived and compared to experimental data.
引用
收藏
页码:412 / +
页数:2
相关论文
共 50 条
  • [1] Variational procedure leading from Davidson potentials to the E(5) and X(5) critical point symmetries
    Bonatsos, D
    Lenis, D
    Petrellis, D
    Minkov, N
    Raychev, PP
    Terziev, PA
    Key Topics in Nuclear Structure, 2005, : 327 - 334
  • [2] E(5) and X(5) critical point symmetries obtained from Davidson potentials through a variational procedure
    Bonatsos, D
    Lenis, D
    Minkov, N
    Petrellis, D
    Raychev, PP
    Terziev, PA
    PHYSICAL REVIEW C, 2004, 70 (02): : 024305 - 1
  • [3] Ground state bands of the E(5) and X(5) critical symmetries obtained from Davidson potentials through a variational procedure
    Bonatsos, D
    Lenis, D
    Minkov, N
    Petrellis, D
    Raychev, PP
    Terziev, PA
    PHYSICS LETTERS B, 2004, 584 (1-2) : 40 - 47
  • [4] Dynamic symmetries at the critical point
    Iachello, F
    PHYSICAL REVIEW LETTERS, 2000, 85 (17) : 3580 - 3583
  • [5] Critical point symmetries in nuclei
    Casten, RF
    REVISTA MEXICANA DE FISICA, 2002, 48 : 62 - 65
  • [6] A VARIATIONAL PROCEDURE FOR HARD CORE POTENTIALS
    LAURIKAINEN, KV
    LYYTIKAINEN, S
    NUCLEAR PHYSICS, 1958, 8 (04): : 416 - 420
  • [7] CRITICAL-POINT THEORY WITH SYMMETRIES
    CLAPP, M
    PUPPE, D
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1991, 418 : 1 - 29
  • [8] Lie point and variational symmetries in minisuperspace Einstein gravity
    Christodoulakis, T.
    Dimakis, N.
    Terzis, Petros A.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2014, 47 (09)
  • [9] Critical Point Leading by example
    Crease, Robert P.
    PHYSICS WORLD, 2011, 24 (09) : 19 - 19
  • [10] Critical point theory for indefinite functionals with symmetries
    Bartsch, T
    Clapp, M
    JOURNAL OF FUNCTIONAL ANALYSIS, 1996, 138 (01) : 107 - 136