Doping cuprous oxide with fluorine and its band gap narrowing

被引:22
|
作者
Ye, Fan [1 ,2 ]
Zeng, Jun-Jie [1 ,2 ]
Cai, Xing-Min [1 ,2 ]
Su, Xiao-Qiang [1 ,2 ]
Wang, Bo [1 ,2 ]
Wang, Huan [1 ,2 ]
Roy, V. A. L. [3 ,4 ]
Tian, Xiao-Qing [1 ,2 ]
Li, Jian-Wei [1 ,2 ]
Zhang, Dong-Ping [1 ,2 ]
Fan, Ping [1 ,2 ]
Zhang, Jun [5 ]
机构
[1] Shenzhen Univ, Sch Phys & Energy, Shenzhen 518060, Peoples R China
[2] Shenzhen Univ, Shenzhen Key Lab Sensor Technol, Shenzhen 518060, Peoples R China
[3] City Univ Hong Kong, Ctr Super Diamond & Adv Films COSDAF, Hong Kong, Hong Kong, Peoples R China
[4] City Univ Hong Kong, Dept Phys & Mat Sci, Hong Kong, Hong Kong, Peoples R China
[5] Lingnan Normal Univ, Sch Phys Sci & Technol, Zhanjiang 524048, Peoples R China
关键词
HOMOJUNCTION SOLAR-CELLS; N-TYPE CU2O; RADICAL OXIDATION; FILMS; TEMPERATURE; DEPOSITION;
D O I
10.1016/j.jallcom.2017.05.272
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Phase-pure cuprous oxide (Cu2O) thin films doped with Fluorine (F) have been prepared under thermal diffusion at diffusion temperatures of 1123 IC and 1223 K and it is found that higher diffusion temperature leads to larger grain size. F-doping slightly reduces the lattice constant and F-doped Cu2O thin films exhibit p-type semiconductor characteristics. The reduction of band gap occurs due to F-doping induced impurity band, because F-doped samples have larger Urbach tails than that of undoped samples. Theoretical calculation demonstrates that substitutional F-doping makes Cu2O almost metallic because the energy bands of F atoms enter the forbidden gap, and interstitial F-doping narrows the band gap because F atoms contribute to the valence bands. The doped F atoms are very possibly interstial and play the role of acceptors in Cu2O. Phase-pure Cu2O doped with F have smaller resistivity and larger hole concentration, implying potential application in solar cells. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:64 / 69
页数:6
相关论文
共 50 条
  • [1] Band gap narrowing of cadmium oxide powder by rare earth praseodymium doping
    H.-Y. He
    J. Lu
    MRS Communications, 2013, 3 : 47 - 50
  • [2] Band gap narrowing of cadmium oxide powder by rare earth praseodymium doping
    He, H. -Y.
    Lu, J.
    MRS COMMUNICATIONS, 2013, 3 (01) : 47 - 50
  • [3] Morphology change and band gap narrowing of hierarchical TiO2 nanostructures induced by fluorine doping
    Dong, Yucai
    Kapilashrami, Mukes
    Zhang, Yanfeng
    Guo, Jinghua
    CRYSTENGCOMM, 2013, 15 (48): : 10657 - 10664
  • [4] Band gap narrowing of titanium dioxide by sulfur doping
    Umebayashi, T
    Yamaki, T
    Itoh, H
    Asai, K
    APPLIED PHYSICS LETTERS, 2002, 81 (03) : 454 - 456
  • [5] Quasiclassical calculation of narrowing of the band gap in silicon with heavy doping
    Poklonskii, NA
    Syaglo, AI
    Borovik, FN
    SEMICONDUCTORS, 1996, 30 (10) : 924 - 927
  • [6] Band-gap narrowing of titanium dioxide by nitrogen doping
    Morikawa, T
    Asahi, R
    Ohwaki, T
    Aoki, K
    Taga, Y
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 2-LETTERS, 2001, 40 (6A): : L561 - L563
  • [8] Band gap narrowing of CdO powder by rare earth neodymium doping
    Chen, P.
    He, Z.
    He, H. -Y.
    JOURNAL OF CERAMIC PROCESSING RESEARCH, 2013, 14 (01): : 56 - 58
  • [9] The Unexpected Role of Fluorine in the Band Gap Narrowing of Silver Niobium and Tantalum Pyrochlore Oxyfluorides
    Moussa, Celine
    Pourpoint, Frederique
    Saitzek, Sebastien
    Famprikis, Theodosios
    Roussel, Pascal
    Kabbour, Houria
    Boivin, Edouard
    INORGANIC CHEMISTRY, 2025, 64 (08) : 3898 - 3907
  • [10] Band gap anomaly in cuprous halides
    Yu, Haoyang
    Cai, Xuefen
    Yang, Yang
    Wang, Zhi-Hao
    Wei, Su-Huai
    COMPUTATIONAL MATERIALS SCIENCE, 2022, 203