EEG-Based Pathology Detection for Home Health Monitoring

被引:90
|
作者
Muhammad, Ghulam [1 ]
Hossain, M. Shamim [2 ]
Kumar, Neeraj [3 ]
机构
[1] King Saud Univ, Coll Comp & Informat Sci, Dept Comp Engn, Riyadh 11543, Saudi Arabia
[2] King Saud Univ, Coll Comp & Informat Sci, Dept Software Engn, Riyadh 11543, Saudi Arabia
[3] Thapar Inst Engn & Technol, Dept Comp Sci & Engn, Patiala 147004, Punjab, India
关键词
Deep neural network; EEG pathology detection; smart healthcare; fusion network; EDGE-COCACO; DEEP; COMMUNICATION; COMPUTATION; NETWORKS; CLOUD;
D O I
10.1109/JSAC.2020.3020654
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
An electroencephalogram (EEG)-based remote pathology detection system is proposed in this study. The system uses a deep convolutional network consisting of 1D and 2D convolutions. Features from different convolutional layers are fused using a fusion network. Various types of networks are investigated; the types include a multilayer perceptron (MLP) with a varying number of hidden layers, and an autoencoder. Experiments are done using a publicly available EEG signal database that contains two classes: normal and abnormal. The experimental results demonstrate that the proposed system achieves greater than 89% accuracy using the convolutional network followed by the MLP with two hidden layers. The proposed system is also evaluated in a cloud-based framework, and its performance is found to be comparable with the performance obtained using only a local server.
引用
收藏
页码:603 / 610
页数:8
相关论文
共 50 条
  • [1] EEG-based seizure detection
    Baumgartner, C.
    EUROPEAN JOURNAL OF NEUROLOGY, 2017, 24 : 748 - 748
  • [2] EEG-based Speech Activity Detection
    Kocturova, Marianna
    Juhar, Jozef
    ACTA POLYTECHNICA HUNGARICA, 2021, 18 (01) : 65 - 77
  • [3] EEG-based Driver Fatigue Detection
    AlZu'bi, Hamzah S.
    Al-Nuaimy, Waleed
    Al-Zubi, Nayel S.
    2013 SIXTH INTERNATIONAL CONFERENCE ON DEVELOPMENTS IN ESYSTEMS ENGINEERING (DESE), 2014, : 111 - 114
  • [4] CogniMeter: EEG-Based Brain States Monitoring
    Hou, Xiyuan
    Liu, Yisi
    Lim, Wei Lun
    Lan, Zirui
    Sourina, Olga
    Mueller-Wittig, Wolfgang
    Wang, Lipo
    TRANSACTIONS ON COMPUTATIONAL SCIENCE XXVIII: SPECIAL ISSUE ON CYBERWORLDS AND CYBERSECURITY, 2016, 9590 : 108 - 126
  • [5] An EEG-based Cognitive Fatigue Detection System
    Karim, Enamul
    Pavel, Hamza Reza
    Jaiswal, Ashish
    Zadeh, Mohammad Zaki
    Theofanidis, Michail
    Wylie, Glenn
    Makedon, Fillia
    PROCEEDINGS OF THE 16TH ACM INTERNATIONAL CONFERENCE ON PERVASIVE TECHNOLOGIES RELATED TO ASSISTIVE ENVIRONMENTS, PETRA 2023, 2023, : 131 - 136
  • [6] Letter to the Editor: EEG-based seizure detection
    Reus, E. E. M.
    Visser, G. H.
    Cox, F. M. E.
    EPILEPSY & BEHAVIOR, 2024, 151
  • [7] EEG-based Absence Seizure Detection Methods
    Liang, Sheng-Fu
    Chang, Wan-Lin
    Chiueh, Herming
    2010 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS IJCNN 2010, 2010,
  • [8] EEG-based Automatic Detection of Drowsy State
    Jai, Jinu
    Titus, Geevarghese
    Purushothaman, S.
    ARTIFICIAL INTELLIGENCE AND EVOLUTIONARY ALGORITHMS IN ENGINEERING SYSTEMS, VOL 1, 2015, 324 : 65 - 72
  • [9] On the EEG-based automated detection of alcohol dependence
    Guntaka, Rajesh
    Tcheslavski, Gleb V.
    International Journal Bioautomation, 2013, 17 (03) : 167 - 176
  • [10] An EEG-Based Fatigue Detection and Mitigation System
    Huang, Kuan-Chih
    Huang, Teng-Yi
    Chuang, Chun-Hsiang
    King, Jung-Tai
    Wang, Yu-Kai
    Lin, Chin-Teng
    Jung, Tzyy-Ping
    INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2016, 26 (04)