Soft Computing Based Evolutionary Multi-Label Classification

被引:0
|
作者
Aslam, Rubina [1 ]
Tamimy, Manzoor Illahi [1 ]
Aslam, Waqar [2 ]
机构
[1] COMSATS Univ Islamabad, Dept Comp Sci, Islamabad 4550, Pakistan
[2] Islamia Univ Bahawalpur, Dept Comp Sci & IT, Bahawalpur 63100, Pakistan
来源
关键词
Multi-label classification; genetic algorithm; ensemble; noisy datasets; Credal C4.5; DECISION TREES; ENSEMBLES; CHALLENGES; KNN;
D O I
10.32604/iasc.2020.013086
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Machine Learning (ML) has revolutionized intelligent systems that range from self-driving automobiles, search engines, business/market analysis, fraud detection, network intrusion investigation, and medical diagnosis. Classification lies at the core of Machine Learning and Multi-label Classification (MLC) is the closest to real-life problems related to heuristics. It is a type of classification problem where multiple labels or classes can be assigned to more than one instance simultaneously. The level of complexity in MLC is increased by factors such as data imbalance, high dimensionality, label correlations, and noise. Conventional MLC techniques such as ensembles- based approaches, Multi-label Stacking, Random k-label sets, and Hierarchy of Multi-label Classifiers struggle to handle these issues and suffer from the increased complexity introduced by these factors. The application of Soft Computing (SC) techniques in intelligent systems has provided a new paradigm for complex real-life problems. These techniques are more tolerant of the inherent imprecision and ambiguity in human thinking. Based on SC techniques such as evolutionary computing and genetic algorithms, intelligent classification systems can be developed that can recognize complex patterns even in noisy datasets otherwise invisible to conventional systems. This study uses an evolutionary approach to handle the MLC noise issue by proposing the Evolutionary Ensemble of Credal C4.5 (EECC). It uses the Credal C4.5 classifier which is based on imprecise probability theory for handling noisy datasets. It can perform effectively in diverse areas of multi-label classification. Experiments on different datasets show that EECC outperforms other techniques in the presence of noise and is noise-robust. Statistical tests show the significance of EECC as compared to other techniques.
引用
收藏
页码:1233 / 1249
页数:17
相关论文
共 50 条
  • [1] Data quality measures based on granular computing for multi-label classification
    Bello, Marilyn
    Napoles, Gonzalo
    Vanhoof, Koen
    Bello, Rafael
    INFORMATION SCIENCES, 2021, 560 : 51 - 67
  • [2] Multi-Label Evolutionary Hypernetwork Based on Label Correlations
    Wang J.
    Liu B.
    Sun K.-W.
    Chen Q.-S.
    Deng X.
    2018, Chinese Institute of Electronics (46): : 1012 - 1018
  • [3] Multi-Label Classification Based on Associations
    Alazaidah, Raed
    Samara, Ghassan
    Almatarneh, Sattam
    Hassan, Mohammad
    Aljaidi, Mohammad
    Mansur, Hasan
    APPLIED SCIENCES-BASEL, 2023, 13 (08):
  • [4] Multi-objective Evolutionary Instance Selection for Multi-label Classification
    Liu, Dingming
    Shang, Haopu
    Hong, Wenjing
    Qian, Chao
    PRICAI 2022: TRENDS IN ARTIFICIAL INTELLIGENCE, PT I, 2022, 13629 : 548 - 561
  • [5] An evolutionary decomposition-based multi-objective feature selection for multi-label classification
    Bidgoli, Azam Asilian
    Ebrahimpour-Komleh, Hossein
    Rahnamayan, Shahryar
    PEERJ COMPUTER SCIENCE, 2020, 2020 (03) : 1 - 32
  • [6] A multi-label classification based approach for sentiment classification
    Liu, Shuhua Monica
    Chen, Jiun-Hung
    EXPERT SYSTEMS WITH APPLICATIONS, 2015, 42 (03) : 1083 - 1093
  • [7] Boosting-based Multi-label Classification
    Kajdanowicz, Tomasz
    Kazienko, Przemyslaw
    JOURNAL OF UNIVERSAL COMPUTER SCIENCE, 2013, 19 (04) : 502 - 520
  • [8] Multi-label Anomaly Classification Based on Electrocardiogram
    Li, Chenyang
    Sun, Le
    HEALTH INFORMATION SCIENCE, HIS 2021, 2021, 13079 : 171 - 178
  • [9] Biclustering-based multi-label classification
    Schmitke, Luiz Rafael
    Paraiso, Emerson Cabrera
    Nievola, Julio Cesar
    KNOWLEDGE AND INFORMATION SYSTEMS, 2024, 66 (08) : 4861 - 4898
  • [10] Topic Model Based Multi-Label Classification
    Padmanabhan, Divya
    Bhat, Satyanath
    Shevade, Shirish
    Narahari, Y.
    2016 IEEE 28TH INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI 2016), 2016, : 996 - 1003