Towards High-Throughput Chemobehavioural Phenomics in Neuropsychiatric Drug Discovery

被引:25
|
作者
Henry, Jason [1 ]
Wlodkowic, Donald [1 ]
机构
[1] RMIT Univ, Sch Sci, Phen Lab, Melbourne, Vic 3000, Australia
来源
MARINE DRUGS | 2019年 / 17卷 / 06期
关键词
behaviour; phenomics; drug discovery; neuroactive; zebrafish; planarian; ATYPICAL ANTIPSYCHOTIC-DRUG; VIDEO TRACKING SYSTEM; CAENORHABDITIS-ELEGANS; NERVOUS-SYSTEM; ANIMAL-MODEL; GENETIC MECHANISMS; PHENOTYPIC SCREENS; BIPOLAR DISORDER; ZEBRAFISH; PLANARIAN;
D O I
10.3390/md17060340
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
Identifying novel marine-derived neuroactive chemicals with therapeutic potential is difficult due to inherent complexities of the central nervous system (CNS), our limited understanding of the molecular foundations of neuro-psychiatric conditions, as well as the limited applications of effective high-throughput screening models that recapitulate functionalities of the intact CNS. Furthermore, nearly all neuro-modulating chemicals exhibit poorly characterized pleiotropic activities often referred to as polypharmacology. The latter renders conventional target-based in vitro screening approaches very difficult to accomplish. In this context, chemobehavioural phenotyping using innovative small organism models such as planarians and zebrafish represent powerful and highly integrative approaches to study the impact of new chemicals on central and peripheral nervous systems. In contrast to in vitro bioassays aimed predominantly at identification of chemicals acting on single targets, phenotypic chemobehavioural analysis allows for complex multi-target interactions to occur in combination with studies of polypharmacological effects of chemicals in a context of functional and intact milieu of the whole organism. In this review, we will outline recent advances in high-throughput chemobehavioural phenotyping and provide a future outlook on how those innovative methods can be utilized for rapidly screening and characterizing marine-derived compounds with prospective applications in neuropharmacology and psychosomatic medicine.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] High-throughput kinetics in drug discovery
    Pinto, Maria Filipa
    Sirina, Julija
    Holliday, Nicholas D.
    Mcwhirter, Claire L.
    SLAS DISCOVERY, 2024, 29 (05)
  • [2] High-throughput screening for drug discovery
    Broach, JR
    Thorner, J
    NATURE, 1996, 384 (6604) : 14 - 16
  • [3] High-throughput crystallography to enhance drug discovery
    Sharff, A
    Jhoti, H
    CURRENT OPINION IN CHEMICAL BIOLOGY, 2003, 7 (03) : 340 - 345
  • [4] A High-Throughput Screen for Antibiotic Drug Discovery
    Scanlon, Thomas C.
    Dostal, Sarah M.
    Griswold, Karl E.
    BIOTECHNOLOGY AND BIOENGINEERING, 2014, 111 (02) : 232 - 243
  • [5] High-Throughput Flow Cytometry in Drug Discovery
    Ding, Mei
    Edwards, Bruce S.
    SLAS DISCOVERY, 2018, 23 (07) : 599 - 602
  • [6] High-throughput and in silico screenings in drug discovery
    Phatak, Sharangdhar S.
    Stephan, Clifford C.
    Cavasotto, Claudio N.
    EXPERT OPINION ON DRUG DISCOVERY, 2009, 4 (09) : 947 - 959
  • [7] High-throughput flow cytometry for drug discovery
    Edwards, Bruce S.
    Young, Susan M.
    Saunders, Matthew J.
    Bologa, Cristian
    Oprea, Tudor I.
    Ye, Richard D.
    Prossnitz, Eric R.
    Graves, Steven W.
    Sklar, Larry A.
    EXPERT OPINION ON DRUG DISCOVERY, 2007, 2 (05) : 685 - 696
  • [8] High-throughput analysis of behavior for drug discovery
    Alexandrov, Vadim
    Brunner, Dani
    Hanania, Taleen
    Leahy, Emer
    EUROPEAN JOURNAL OF PHARMACOLOGY, 2015, 750 : 82 - 89
  • [9] High-throughput screening, metabolomics and drug discovery
    Harrigan, GG
    Yates, LA
    IDRUGS, 2006, 9 (03) : 188 - 192
  • [10] Cytotoxicity tests for high-throughput drug discovery
    Slater, K
    CURRENT OPINION IN BIOTECHNOLOGY, 2001, 12 (01) : 70 - 74