A note on the multiplicities of graph eigenvalues

被引:14
|
作者
Bu, Changjiang [1 ]
Zhang, Xu [1 ]
Zhou, Jiang [1 ]
机构
[1] Harbin Engn Univ, Coll Sci, Dept Appl Math, Harbin 150001, Peoples R China
基金
中国国家自然科学基金;
关键词
Real symmetric matrix; Adjacency matrix; Star complement; Eigenvalue multiplicity; Pendant path;
D O I
10.1016/j.laa.2013.08.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a graph with vertex set {1, ..., n}, and let H be the graph obtained by attaching one pendant path of length k(i) at vertex i (i = 1, ..., r, 1 <= r <= n). For a real symmetric matrix A whose graph is H, let m(A)(mu) denote the multiplicity of an eigenvalue mu of A. From a result in da Fonseca (2005) [7], we know that m(A)(mu) <= n. In this note, we characterize the case m(A)(mu) = n. We also give two upper bounds on eigenvalue multiplicity of trees and unicyclic graphs, which are generalizations of. some results in Rowlinson (2010) [10]. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:69 / 74
页数:6
相关论文
共 50 条