The weak Harnack inequality for unbounded supersolutions of equations with generalized Orlicz growth

被引:28
|
作者
Benyaiche, Allami [1 ]
Harjulehto, Petteri [2 ]
Hasto, Peter [2 ]
Karppinen, Arttu [2 ]
机构
[1] Ibn Tofail Univ, Dept Math, Kenitra, Morocco
[2] Univ Turku, Dept Math & Stat, FI-20014 Turku, Finland
关键词
Nonstandard growth; Supersolution; Harnack's inequality; Musielak-Orlicz spaces; Variable exponent; Double phase; NONLINEAR ELLIPTIC-EQUATIONS; DOUBLE-PHASE PROBLEMS; RENORMALIZED SOLUTIONS; HOLDER CONTINUITY; REGULARITY; FUNCTIONALS; MINIMIZERS; SPACES;
D O I
10.1016/j.jde.2020.11.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study unbounded weak supersolutions of elliptic partial differential equations with generalized Orlicz (Musielak-Orlicz) growth. We show that they satisfy the weak Harnack inequality with optimal exponent provided that they belong to a suitable Lebesgue or Sobolev space. Furthermore, we establish the sharpness of our central assumptions. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页码:790 / 814
页数:25
相关论文
共 50 条