An improved VC dimension bound for sparse polynomials

被引:1
|
作者
Schmitt, M [1 ]
机构
[1] Ruhr Univ Bochum, Fak Math, Lehrstuhl Math & Informat, D-44780 Bochum, Germany
来源
LEARNING THEORY, PROCEEDINGS | 2004年 / 3120卷
关键词
D O I
10.1007/978-3-540-27819-1_27
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We show that the function class consisting of k-sparse polynomials in n variables has Vapnik-Chervonenkis (VC) dimension at least nk + 1. This result supersedes the previously known lower bound via k-term monotone disjunctive normal form (DNF) formulas obtained by Littlestone (1988). Moreover, it implies that the VC dimension for k-sparse polynomials is strictly larger than the VC dimension for k-term monotone DNF. The new bound is achieved by introducing an exponential approach that employs Gaussian radial basis function (RBF) neural networks for obtaining classifications of points in terms of sparse polynomials.
引用
收藏
页码:393 / 407
页数:15
相关论文
共 50 条
  • [1] VC DIMENSION AND UNIFORM LEARNABILITY OF SPARSE POLYNOMIALS AND RATIONAL FUNCTIONS
    KARPINSKI, M
    WERTHER, T
    SIAM JOURNAL ON COMPUTING, 1993, 22 (06) : 1276 - 1285
  • [2] QMCM: Minimizing Vapnik's bound on the VC dimension
    Jayadeva
    Soman, Sumit
    Pant, Himanshu
    Sharma, Mayank
    NEUROCOMPUTING, 2020, 399 : 352 - 360
  • [3] Lower bound on VC-dimension by local shattering
    Erlich, Y
    Chazan, D
    Petrack, S
    Levy, A
    NEURAL COMPUTATION, 1997, 9 (04) : 771 - 776
  • [4] Designing nonlinear classifiers through minimizing VC dimension bound
    Xu, JH
    ADVANCES IN NEURAL NETWORKS - ISNN 2005, PT 1, PROCEEDINGS, 2005, 3496 : 900 - 905
  • [5] A New Upper Bound for the VC-Dimension of Visibility Regions
    Gilbers, Alexander
    Klein, Rolf
    COMPUTATIONAL GEOMETRY (SCG 11), 2011, : 380 - 386
  • [6] Learning a hyperplane classifier by minimizing an exact bound on the VC dimension
    Jayadeva
    Neurocomputing, 2015, 149 : 683 - 689
  • [7] A new upper bound for the VC-dimension of visibility regions
    Gilbers, Alexander
    Klein, Rolf
    COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 2014, 47 (01): : 61 - 74
  • [8] Learning a hyperplane regressor through a tight bound on the VC dimension
    Jayadeva
    Chandra, Suresh
    Batra, Sanjit S.
    Sabharwal, Siddarth
    NEUROCOMPUTING, 2016, 171 : 1610 - 1616
  • [9] Fast construction of constant bound functions for sparse polynomials
    Andrew Paul Smith
    Journal of Global Optimization, 2009, 43 : 445 - 458
  • [10] Fast construction of constant bound functions for sparse polynomials
    Smith, Andrew Paul
    JOURNAL OF GLOBAL OPTIMIZATION, 2009, 43 (2-3) : 445 - 458