Speed Imagery EEG Classification with Spatial-temporal Feature Attention Deep Neural Networks

被引:1
|
作者
Hao, Xiaoqian [1 ]
Sun, Biao [1 ]
机构
[1] Tianjin Univ, Sch Elect & Informat Engn, Tianjin 300072, Peoples R China
关键词
speed imagery; electroencephalography; spatialtemporal features; deep neural networks;
D O I
10.1109/ISCAS48785.2022.9937802
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Decoding continuous brain intentions is a major challenge for the research and application of brain-computer interfaces (BCI). Neuronal activity has been experimentally observed through various brain activity measuring techniques, of which electroencephalography (EEG) is the most widely used as it is noninvasive, practical, and has high time resolution. Here we propose a spontaneous speed imagery BCI paradigm with an EEG signals decoding method, in which a spatial-temporal feature attention deep neural network is developed to decode the continuous brain intentions. The speed imagery EEG signals of 0 Hz, 0.5 Hz and 1 Hz of left-hand clenching by 11 healthy subjects are decoded in experiments. The results reveal that the proposed method has the advantages of good performance and high efficiency, which is of great significance for patient rehabilitation and consumer applications.
引用
收藏
页码:3438 / 3442
页数:5
相关论文
共 50 条
  • [1] Deep Neural Network with Attention Mechanism for Classification of Motor Imagery EEG
    Huang, Yen-Cheng
    Chang, Jia-Ren
    Chen, Li-Fen
    Chen, Yong-Sheng
    2019 9TH INTERNATIONAL IEEE/EMBS CONFERENCE ON NEURAL ENGINEERING (NER), 2019, : 1130 - 1133
  • [2] Emotion Classification Based on Transformer and CNN for EEG Spatial-Temporal Feature Learning
    Yao, Xiuzhen
    Li, Tianwen
    Ding, Peng
    Wang, Fan
    Zhao, Lei
    Gong, Anmin
    Nan, Wenya
    Fu, Yunfa
    BRAIN SCIENCES, 2024, 14 (03)
  • [3] Improving EEG-Based Motor Imagery Classification via Spatial and Temporal Recurrent Neural Networks
    Ma, Xuelin
    Qiu, Shuang
    Du, Changde
    Xing, Jiezhen
    He, Huiguang
    2018 40TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2018, : 1903 - 1906
  • [4] Motor Imagery EEG Signal Classification Using Deep Neural Networks
    Nakra, Abhilasha
    Duhan, Manoj
    COMPUTING SCIENCE, COMMUNICATION AND SECURITY, 2022, 1604 : 128 - 140
  • [5] EEG Representation in Deep Convolutional Neural Networks for Classification of Motor Imagery
    Robinson, Neethu
    Lee, Seong-Whan
    Guan, Cuntai
    2019 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC), 2019, : 1322 - 1326
  • [6] Spatial-Temporal Self-Attention for Asynchronous Spiking Neural Networks
    Wang, Yuchen
    Shi, Kexin
    Lu, Chengzhuo
    Liu, Yuguo
    Zhang, Malu
    Qu, Hong
    PROCEEDINGS OF THE THIRTY-SECOND INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2023, 2023, : 3085 - 3093
  • [7] Spatial-Frequency Feature Learning and Classification of Motor Imagery EEG Based on Deep Convolution Neural Network
    Miao, Minmin
    Hu, Wenjun
    Yin, Hongwei
    Zhang, Ke
    COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE, 2020, 2020
  • [8] Attention-Based Multiscale Spatial-Temporal Convolutional Network for Motor Imagery EEG Decoding
    Zhang, Yu
    Li, Penghai
    Cheng, Longlong
    Li, Mingji
    Li, Hongji
    IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, 2024, 70 (01) : 2423 - 2434
  • [9] Deep Neural Networks as Feature Extractors for Classification of Vehicles in Aerial Imagery
    Mohan, Vysakh S.
    Sowmya, V
    Soman, K. P.
    2018 5TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING AND INTEGRATED NETWORKS (SPIN), 2018, : 105 - 110
  • [10] Spatial-Temporal Deep Tensor Neural Networks for Large-Scale Urban Network Speed Prediction
    Zhou, Lingxiao
    Zhang, Shuaichao
    Yu, Jingru
    Chen, Xiqun
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2020, 21 (09) : 3718 - 3729