DESIGN AND FPGA IMPLEMENTATION OF AN ADAPTIVE VIDEO SUBSAMPLING ALGORITHM FOR ENERGY-EFFICIENT SINGLE OBJECT TRACKING

被引:0
|
作者
Iqbal, Odrika [1 ,3 ]
Siddiqui, Saquib [1 ]
Martin, Joshua [3 ]
Katoch, Sameeksha [1 ,3 ]
Spanias, Andreas [1 ,3 ]
Bliss, Daniel [1 ]
Jayasuriya, Suren [1 ,2 ,3 ]
机构
[1] Arizona State Univ, Sch Elect Comp & Energy Engn, Tempe, AZ 85287 USA
[2] Arizona State Univ, Sch Arts Media & Engn, Tempe, AZ 85287 USA
[3] Arizona State Univ, SenSIP Ctr, Tempe, AZ 85287 USA
来源
2020 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP) | 2020年
关键词
FPGA acceleration; embedded computer vision; single object tracking; adaptive subsampling; MULTIOBJECT TRACKING; IMAGE;
D O I
暂无
中图分类号
TB8 [摄影技术];
学科分类号
0804 ;
摘要
Image sensors with programmable region-of-interest (ROI) readout are a new sensing technology important for energy-efficient embedded computer vision. In particular, ROIs can subsample the number of pixels being readout while performing single object tracking in a video. In this paper, we develop adaptive sampling algorithms which perform joint object tracking and predictive video subsampling. We utilize an object detection consisting of either mean shift tracking or a neural network, coupled with a Kalman filter for prediction. We show that our algorithms achieve mean average precision of 0.70 or higher on a dataset of 20 videos in software. Further, we implement hardware acceleration of mean shift tracking with Kalman filter adaptive subsampling on an FPGA. Hardware results show a 23x improvement in clock cycles and latency as compared to baseline methods and achieves 38FPS real-time performance. This research points to a new domain of hardware-software co-design for adaptive video subsampling in embedded computer vision.
引用
收藏
页码:3065 / 3069
页数:5
相关论文
共 50 条
  • [1] ADAPTIVE VIDEO SUBSAMPLING FOR ENERGY-EFFICIENT OBJECT DETECTION
    Mohan, Divya
    Katoch, Sameeksha
    Jayasuriya, Suren
    Turaga, Pavan
    Spanias, Andreas
    CONFERENCE RECORD OF THE 2019 FIFTY-THIRD ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS, 2019, : 103 - 107
  • [2] Energy-Efficient Object Tracking Using Adaptive ROI Subsampling and Deep Reinforcement Learning
    Katoch, Sameeksha
    Iqbal, Odrika
    Spanias, Andreas
    Jayasuriya, Suren
    IEEE ACCESS, 2023, 11 : 41995 - 42011
  • [3] Real life implementation of an energy-efficient adaptive advance encryption design on FPGA
    Bisht, Neeraj
    Pandey, Bishwajeet
    Budhani, Sandeep Kumar
    INTERNATIONAL JOURNAL OF EMBEDDED SYSTEMS, 2023, 16 (02) : 105 - 116
  • [4] An Energy-Efficient Object Tracking Algorithm in Sensor Networks
    Ren, Qianqian
    Gao, Hong
    Jiang, Shouxu
    Li, Jianzhong
    WIRELESS ALGORITHMS, SYSTEMS, AND APPLICATIONS, PROCEEDINGS, 2008, 5258 : 237 - 248
  • [5] FPGA implementation of video processing-based algorithm for object tracking
    Popescu, Dan
    PǍtârniche, Dinu
    UPB Scientific Bulletin, Series C: Electrical Engineering, 2010, 72 (03): : 121 - 130
  • [6] FPGA IMPLEMENTATION OF VIDEO PROCESSING-BASED ALGORITHM FOR OBJECT TRACKING
    Popescu, Dan
    Patarniche, Dinu
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN SERIES C-ELECTRICAL ENGINEERING AND COMPUTER SCIENCE, 2010, 72 (03): : 121 - 130
  • [7] Energy-efficient object tracking algorithm in wireless sensor networks
    College of Computer Science and Technology, Harbin Institute of Technology, Harbin 150001, China
    不详
    Tongxin Xuebao, 2009, 4 (50-59):
  • [8] An Energy-Efficient Algorithm for Object Tracking in Wireless Sensor Networks
    Lin, Frank Yeong-Sung
    Lee, Cheng-Ta
    Hsu, Yen-Yi
    2010 IEEE INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS, NETWORKING AND INFORMATION SECURITY (WCNIS), VOL 2, 2010, : 424 - +
  • [9] Design of Adaptive Video Image Dehazing Algorithm and FPGA Accelerated Implementation
    Tang Yongming
    Dai Rongshi
    Yu Feng
    Wang Tianpeng
    JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY, 2021, 43 (09) : 2542 - 2551
  • [10] A Robust and Energy-efficient Object Tracking Algorithm for a Wireless Sensor Network
    Cota, Natcha
    Kasetkasem, Teerasit
    Kovavisaruch, La-or
    Yamaoka, Katsunori
    2016 INTERNATIONAL ELECTRICAL ENGINEERING CONGRESS, IEECON2016, 2016, : 425 - 428