A phenomenological multi-axial constitutive law for switching in polycrystalline ferroelectric ceramics

被引:151
|
作者
McMeeking, RM [1 ]
Landis, CM
机构
[1] Univ Calif Santa Barbara, Dept Mech & Environm Engn, Santa Barbara, CA 93106 USA
[2] Rice Univ, Dept Mech Engn & Mat Sci, Houston, TX 77251 USA
基金
美国国家科学基金会;
关键词
D O I
10.1016/S0020-7225(02)00033-2
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A phenomenological constitutive law for ferroelectric switching due to multi-axial mechanical and electrical loading of a polycrystalline material is developed. The framework of the law is based on kinematic hardening plasticity theory and has a switching surface in the space of mechanical stress and electric field that determines when non-linear response is possible. The size and shape of the switching surface in a modified electric field space remains fixed during non-linear behavior but its center moves around and thus is controlled by a kinematical hardening process. In general, the remanent polarization and the remanent strain are used as the internal variables that control how the center of the switching surface moves. However, the form presented in this paper has a one-to-one relationship between the remanent strain and the remanent polarization, simplifying the constitutive law and allowing remanent polarization to be used as the only internal variable controlling the kinematic effects. The constitutive law successfully reproduces hysteresis and butterfly loops for ferroelectric ceramics. The hysteresis and butterfly loops respond appropriately to the application of a fixed compressive stress parallel to the electric field. In addition, the law successfully handles remanent polarization rotation due to the application of electric field at an angle to the polarization direction. (C) 2002 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:1553 / 1577
页数:25
相关论文
共 50 条