Heyting Algebras with Indiscernibility Relations

被引:0
|
作者
Flaminio, Tommaso [1 ]
Gerla, Brunella [1 ]
Marigo, Francesco [1 ]
机构
[1] Univ Insubria, Dipartimento Sci Teori & Applicate, Via G Mazzini 5, I-21100 Varese, Italy
关键词
VARIETIES; DUALITY;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We introduce a class of algebraic structures, finite GBL-pairs, as pairs made of a finite Heyting algebra and a subgroup of its automorphism group. The group determines an equivalence relation on the Heyting algebra: we prove that the quotient, when endowed with suitable operations, is a GBL-algebra, and the operations can be interpreted as infima or suprema of equivalence classes. Conversely, we prove that every finite GBL-algebra can be represented as a GBL-pair. The motivation is to provide models for a fuzzy extension of intuitionistic propositional logic.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] PROFINITE HEYTING ALGEBRAS AND PROFINITE COMPLETIONS OF HEYTING ALGEBRAS
    Bezhanishvili, Guram
    Morandi, Patrick J.
    GEORGIAN MATHEMATICAL JOURNAL, 2009, 16 (01) : 29 - 47
  • [2] Subalgebras of Heyting and De Morgan Heyting Algebras
    Castano, Valeria
    Munoz Santis, Marcela
    STUDIA LOGICA, 2011, 98 (1-2) : 123 - 139
  • [3] Heyting algebras with operators
    Hasimoto, Y
    MATHEMATICAL LOGIC QUARTERLY, 2001, 47 (02) : 187 - 196
  • [4] Inquisitive Heyting Algebras
    Puncochar, Vit
    STUDIA LOGICA, 2021, 109 (05) : 995 - 1017
  • [5] ON FRONTAL HEYTING ALGEBRAS
    Castiglioni, Jose L.
    Sagastume, Marta
    San Martin, Hernan J.
    REPORTS ON MATHEMATICAL LOGIC, 2010, 45 : 201 - 224
  • [6] INTERPRETATIONS INTO HEYTING ALGEBRAS
    LEWIN, R
    ALGEBRA UNIVERSALIS, 1987, 24 (1-2) : 149 - 166
  • [7] Subalgebras of Heyting and De Morgan Heyting Algebras
    Valeria Castaño
    Marcela Muñoz Santis
    Studia Logica, 2011, 98 : 123 - 139
  • [8] Inquisitive Heyting Algebras
    Vít Punčochář
    Studia Logica, 2021, 109 : 995 - 1017
  • [9] On skew Heyting algebras
    Cvetko-Vah, Karin
    ARS MATHEMATICA CONTEMPORANEA, 2017, 12 (01) : 37 - 50
  • [10] A LOGIC OF INDISCERNIBILITY RELATIONS
    ORLOWSKA, E
    LECTURE NOTES IN COMPUTER SCIENCE, 1985, 208 : 178 - 186