This paper discusses stability conditions for matrices that determine the homogeneous dynamics of systems of linear second-order differential equations. In particular, we focus on situations in which these matrices have a negative diagonal submatrix. We present a number of theorems that provide conditions which are sufficient for either stability or instability of such matrices. In order to discuss the instability theorems and unify them with earlier results, we introduce the concept of the dominant diagonal number of a matrix. (C) 2002 Elsevier Science Inc. All rights reserved.
机构:
China Med Univ Hosp, Res Ctr Interneural Comp, Taichung 40447, Taiwan
China Med Univ, Ctr Gen Educ, Taichung 40402, TaiwanChina Med Univ Hosp, Res Ctr Interneural Comp, Taichung 40447, Taiwan
Shih, Mau-Hsiang
Hsu, Sheng-Yi
论文数: 0引用数: 0
h-index: 0
机构:
China Med Univ Hosp, Res Ctr Interneural Comp, Taichung 40447, Taiwan
China Med Univ, Dept Biomed Imaging & Radiol Sci, Taichung 40402, TaiwanChina Med Univ Hosp, Res Ctr Interneural Comp, Taichung 40447, Taiwan
机构:
Eotvos Lorand Univ, Math Inst, H-1117 Budapest, Hungary
Comp & Automat Res Inst, H-1111 Budapest, HungaryEotvos Lorand Univ, Math Inst, H-1117 Budapest, Hungary
Kos, Geza
Ligeti, Peter
论文数: 0引用数: 0
h-index: 0
机构:
Eotvos Lorand Univ, Dept Comp Algebra, H-1117 Budapest, Hungary
Eotvos Lorand Univ, Dept Comp Sci, H-1117 Budapest, Hungary
Alfred Renyi Inst Math, H-1053 Budapest, HungaryEotvos Lorand Univ, Math Inst, H-1117 Budapest, Hungary
Ligeti, Peter
Sziklai, Peter
论文数: 0引用数: 0
h-index: 0
机构:
Eotvos Lorand Univ, Math Inst, H-1117 Budapest, HungaryEotvos Lorand Univ, Math Inst, H-1117 Budapest, Hungary