The Problem of Bicenter and Isochronicity for a Class of Quasi Symmetric Planar Systems

被引:4
|
作者
Du Chaoxiong [1 ]
机构
[1] Hunan Shaoyang Univ, Dept Math, Shaoyang 422000, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
REVERSIBLE CUBIC SYSTEMS; LIMIT-CYCLES; QUINTIC SYSTEMS; CENTERS; LINEARIZABILITY; BIFURCATION; CONSTANTS; INFINITY;
D O I
10.1155/2014/482450
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a class of quasi symmetric seventh degree systems and obtain the conditions that its two singular points can be two centers at the same step by careful computing and strict proof. In addition, the condition of an isochronous center is also given. In terms of quasi symmetric systems, our work is interesting and obtained conclusions about bicenters are new.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Isochronicity for a class of reversible systems
    Wu, Kuilin
    Zhao, Yulin
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 365 (01) : 300 - 307
  • [2] Isochronicity conditions for some planar polynomial systems
    Boussaada, Islam
    Chouikha, A. Raouf
    Strelcyn, Jean-Marie
    BULLETIN DES SCIENCES MATHEMATIQUES, 2011, 135 (01): : 89 - 112
  • [3] Isochronicity and linearizability of planar polynomial Hamiltonian systems
    Llibre, Jaume
    Romanovski, Valery G.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 259 (05) : 1649 - 1662
  • [4] The integrability problem for a class of planar systems
    Algaba, A.
    Gamero, E.
    Garcia, C.
    NONLINEARITY, 2009, 22 (02) : 395 - 420
  • [5] Isochronicity conditions for some planar polynomial systems II
    Bardet, Magali
    Boussaada, Islam
    Chouikha, A. Raouf
    Strelcyn, Jean-Marie
    BULLETIN DES SCIENCES MATHEMATIQUES, 2011, 135 (02): : 230 - 249
  • [6] ISOCHRONICITY OF BI-CENTERS FOR SYMMETRIC QUARTIC DIFFERENTIAL SYSTEMS
    Fernandes, Wilker
    Valerio, Viviane Pardini
    Tempesta, Patricia
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2022, 27 (07): : 3991 - 4006
  • [7] ISOCHRONICITY FOR TRIVIAL QUINTIC AND SEPTIC PLANAR POLYNOMIAL HAMILTONIAN SYSTEMS
    Braun, Francisco
    Llibre, Jaume
    Mereu, Ana C.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2016, 36 (10) : 5245 - 5255
  • [8] Pseudo-isochronicity in a class of septic differential systems
    Wu, Yusen
    Li, Peiluan
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2009, 58 (10) : 2069 - 2080
  • [9] Classification of the centers and isochronicity for a class of quartic polynomial differential systems
    Li Feng
    Liu Yirong
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (06) : 2270 - 2291
  • [10] DERIVATION OF ISOCHRONICITY CONDITIONS FOR QUASI-CUBIC HOMOGENEOUS ANALYTIC SYSTEMS
    Wu, Yusen
    Li, Feng
    Li, Peiluan
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2013, 23 (09):