IMEX Large Time Step Finite Volume Methods for Low Froude Number Shallow Water Flows

被引:44
|
作者
Bispen, Georgij [1 ]
Arun, K. R. [2 ]
Lukacova-Medvid'ova, Maria [1 ]
Noelle, Sebastian [3 ]
机构
[1] Johannes Gutenberg Univ Mainz, Inst Math, Mainz, Germany
[2] Indian Inst Sci Educ & Res, Sch Math, Thiruvananthapuram, Kerala, India
[3] Rhein Westfal TH Aachen, IGPM, Aachen, Germany
关键词
Low Froude number flows; asymptotic preserving schemes; shallow water equations; large time step; semi-implicit approximation; evolution Galerkin schemes; EVOLUTION GALERKIN METHODS; NAVIER-STOKES EQUATIONS; HYPERBOLIC CONSERVATION-LAWS; WELL-BALANCED SCHEME; SOURCE TERMS; ISENTROPIC EULER; SYSTEMS; SIMULATIONS; LIMIT;
D O I
10.4208/cicp.040413.160114a
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present new large time step methods for the shallow water flows in the low Froude number limit. In order to take into account multisc ale phenomena that typically appear in geophysical flows nonlinear fluxes are split into a linear part governing the gravitational waves and the nonlinear advection. We propose to approximate fast linear waves implicitly in time and in space by means of a genuinely multidimensional evolution operator. On the other hand, we approximate nonlinear advection part explicitly in time and in space by means of the method of characteristics or some standard numerical flux function. Time integration is realized by the implicit-explicit (IMEX) method. We apply the IMEX Euler scheme, two step Runge Kutta Cranck Nicolson scheme, as well as the semi-implicit BDF scheme and prove their asymptotic preserving property in the low Froude number limit. Numerical experiments demonstrate stability, accuracy and robustness of these new large time step finite volume schemes with respect to small Froude number.
引用
收藏
页码:307 / 347
页数:41
相关论文
共 50 条
  • [1] A SEMI-IMPLICIT MULTISCALE SCHEME FOR SHALLOW WATER FLOWS AT LOW FROUDE NUMBER
    Vater, Stefan
    Klein, Rupert
    COMMUNICATIONS IN APPLIED MATHEMATICS AND COMPUTATIONAL SCIENCE, 2018, 13 (02) : 303 - 336
  • [2] A comparison between the meshless and the finite volume methods for shallow water flows
    Alhuri, Yasser
    Benkhaldoun, Fayssal
    Elmahi, Imad
    Ouazar, Driss
    Seaid, Mohammed
    Taik, Ahmed
    FINITE VOLUMES FOR COMPLEX APPLICATIONS VI: PROBLEMS & PERSPECTIVES, VOLS 1 AND 2, 2011, 4 : 13 - +
  • [3] Finite volume methods for low Mach number flows under buoyancy
    Birken, P.
    HYPERBOLIC PROBLEMS: THEORY, NUMERICS, APPLICATIONS: PROCEEDINGS OF THE 11TH INTERNATIONAL CONFERENCE ON HYPERBOLIC PROBLEMS, 2008, : 331 - 338
  • [4] Large Time Step Finite Volume Evolution Galerkin Methods
    A. Hundertmark-Zaušková
    M. Lukáčová-Medvid’ová
    F. Prill
    Journal of Scientific Computing, 2011, 48 : 227 - 240
  • [5] Large Time Step Finite Volume Evolution Galerkin Methods
    Hundertmark-Zauskova, A.
    Lukacova-Medvid'ova, M.
    Prill, F.
    JOURNAL OF SCIENTIFIC COMPUTING, 2011, 48 (1-3) : 227 - 240
  • [6] LOW FROUDE NUMBER LIMIT OF THE ROTATING SHALLOW WATER AND EULER EQUATIONS
    Wu, Kung-Chien
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 142 (03) : 939 - 947
  • [7] Stability of a Cartesian grid projection method for zero Froude number shallow water flows
    Vater, Stefan
    Klein, Rupert
    NUMERISCHE MATHEMATIK, 2009, 113 (01) : 123 - 161
  • [8] Stability of a Cartesian grid projection method for zero Froude number shallow water flows
    Stefan Vater
    Rupert Klein
    Numerische Mathematik, 2009, 113 : 123 - 161
  • [9] A staggered conservative scheme for every Froude number in rapidly varied shallow water flows
    Stelling, GS
    Duinmeijer, SPA
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2003, 43 (12) : 1329 - 1354
  • [10] Asymptotic Consistency of the RS-IMEX Scheme for the Low-Froude Shallow Water Equations: Analysis and Numerics
    Zakerzadeh, Hamed
    THEORY, NUMERICS AND APPLICATIONS OF HYPERBOLIC PROBLEMS II, 2018, 237 : 665 - 675