Renormalization study of two-dimensional convergent solutions of the porous medium equation

被引:19
|
作者
Betelú, SI [1 ]
Aronson, DG
Angenent, SB
机构
[1] Univ Minnesota, Sch Math, Minneapolis, MN 55455 USA
[2] Univ Wisconsin, Dept Math, Madison, WI 53706 USA
来源
PHYSICA D | 2000年 / 138卷 / 3-4期
关键词
porous medium flow; similarity; self-similarity; renormalization; focusing; diffusion; nonlinear; stability;
D O I
10.1016/S0167-2789(99)00209-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Tn the Focusing problem, we study a solution of the porous medium equation u(t) = Delta(u(m)) whose initial distribution is positive in the exterior of a closed noncircular two-dimensional region, and zero inside. We implement a numerical scheme that renormalizes the solution each time that the average size of the empty region reduces by a half. The initial condition is a function with circular level sets distorted with a small sinusoidal perturbation of wave number k > 3. We find that for nonlinearity exponents m smaller than a critical value which depends on k, the solution tends to a self-similar regime, characterized by rounded polygonal interfaces and similarity exponents that depend on m and on the discrete rotational symmetry number k. For m greater than the critical value, the final form of the interface is circular. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:344 / 359
页数:16
相关论文
共 50 条
  • [1] Two-dimensional filtration problem for solutions in a nonhomogeneous porous medium
    Dmitriev V.I.
    Kantsel' A.A.
    Kurkina E.S.
    Peskov N.V.
    Computational Mathematics and Modeling, 2009, 20 (2) : 122 - 143
  • [2] The flow of a foam in a two-dimensional porous medium
    Geraud, Baudouin
    Jones, Sian A.
    Cantat, Isabelle
    Dollet, Benjamin
    Meheust, Yves
    WATER RESOURCES RESEARCH, 2016, 52 (02) : 773 - 790
  • [3] A comparative study of two-dimensional natural convection in an isotropic porous medium
    Chandran, Pallath
    Sacheti, Nirmal C.
    Singh, Ashok K.
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2011, 21 (J11): : 60 - 74
  • [4] A comparative study of two-dimensional natural convection in an isotropic porous medium
    Chandran, Pallath
    Sacheti, Nirmal C.
    Singh, Ashok K.
    International Journal of Applied Mathematics and Statistics, 2011, 21 (J11): : 60 - 74
  • [5] SIMILAR SOLUTIONS OF BRINKMAN EQUATIONS FOR A TWO-DIMENSIONAL PLANE JET IN A POROUS-MEDIUM
    FRIEDRICH, R
    RUDRAIAH, N
    JOURNAL OF FLUIDS ENGINEERING-TRANSACTIONS OF THE ASME, 1983, 105 (04): : 474 - 478
  • [6] On Stationary Solutions of Two-Dimensional Euler Equation
    Nikolai Nadirashvili
    Archive for Rational Mechanics and Analysis, 2013, 209 : 729 - 745
  • [7] Two-dimensional analytical solutions of the radiative transfer equation for the axisymmetrical inhomogeneous semitransparent medium
    Ben-Abdallah, P
    Sakami, M
    Le Dez, V
    Saulnier, JB
    Charette, A
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE II FASCICULE B-MECANIQUE PHYSIQUE ASTRONOMIE, 2000, 328 (01): : 47 - 54
  • [8] A Family of Solutions to the Two-Dimensional Eikonal Equation
    An. G. Marchuk
    E. D. Moskalensky
    Numerical Analysis and Applications, 2020, 13 : 127 - 135
  • [9] Exact solutions of the two-dimensional Burgers equation
    Sirendaoreji
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (39): : 6897 - 6900
  • [10] Invariant solutions of the two-dimensional heat equation
    Narmanov, O. A.
    VESTNIK UDMURTSKOGO UNIVERSITETA-MATEMATIKA MEKHANIKA KOMPYUTERNYE NAUKI, 2019, 29 (01): : 52 - 60