Cubic non-linearity and longitudinal surface solitary waves

被引:12
|
作者
Porubov, Alexey V. [1 ]
Maugin, Gerard A. [2 ]
机构
[1] Inst Problems Mech Engn, St Petersburg 199178, Russia
[2] Univ Paris 06, Inst Jean Rond Alembert, CNRS, UMR 7190, F-75252 Paris 05, France
关键词
Non-linear wave; Surface strain solitary wave; Abnormal non-linearity;
D O I
10.1016/j.ijnonlinmec.2008.09.003
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
It is shown that for some seismic media both quadratic and cubic non-linearities should be taken into account in the governing equation for longitudinal waves. The new equation is obtained to account for non-linear surface waves in a medium surrounding a non-linearly elastic rod. Exact solutions of the equation allow us to describe simultaneous propagation of tensile and compressive localized strain waves. Various interactions between these waves give rise to both the multi-bump and "Mexican hat" localized wave structures closer to the surface waves recently observed in experiments. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:552 / 559
页数:8
相关论文
共 50 条
  • [1] Longitudinal strain solitary waves in presence of cubic non-linearity
    Porubov, A
    Maugin, GA
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2005, 40 (07) : 1041 - 1048
  • [2] Interactions of Type II vectorial spatial solitary waves in materials with quadratic non-linearity
    Inst de Recherche en Communications, Optiques et Microondes, Limoges, France
    Opt Quantum Electron, 7-10 (923-935):
  • [3] Interactions of Type II vectorial spatial solitary waves in materials with quadratic non-linearity
    Barthelemy, A
    Bourliaguet, B
    Kermene, V
    Costantini, B
    De Angelis, C
    Modotto, D
    Assanto, G
    OPTICAL AND QUANTUM ELECTRONICS, 1998, 30 (7-10) : 923 - 935
  • [4] Interactions of Type II vectorial spatial solitary waves in materials with quadratic non-linearity
    A. Barthelemy
    B. Bourliaguet
    V. Kermene
    B. Costantini
    C. De Angelis
    D. Modotto
    G. Assanto
    Optical and Quantum Electronics, 1998, 30 : 923 - 935
  • [5] Solutions of the modified Ostrovskii equation with cubic non-linearity
    Nikitenkova, SP
    Stepanyants, YA
    Chikhladze, LM
    PMM JOURNAL OF APPLIED MATHEMATICS AND MECHANICS, 2000, 64 (02): : 267 - 274
  • [6] MEAN-FIELD DYNAMO WITH CUBIC NON-LINEARITY
    KLEEORIN, NI
    RUZMAIKIN, AA
    ASTRONOMISCHE NACHRICHTEN, 1984, 305 (05) : 265 - 275
  • [7] Non-linearity
    Duddeck, Fabian M. E.
    von Mises, R.
    Lecture Notes in Applied and Computational Mechanics, 2002, 5 : 115 - 123
  • [8] Propagation of laser beams in photonic crystals with cubic non-linearity
    Kurilkina, SN
    ICONO 2001: NONLINEAR OPTICAL PHENOMENA AND NONLINEAR DYNAMICS OF OPTICAL SYSTEMS, 2002, 4751 : 157 - 162
  • [9] Dynamics of localized waves with large amplitude in weakly dispersing medium with quadratic and positive cubic non-linearity
    Slyunyaev, A.V.
    Zhurnal Eksperimental'noj i Teoreticheskoj Fiziki, 2001, 119 (03): : 606 - 613
  • [10] Detection of Hermitian connections in wave equations with cubic non-linearity
    Chen, Xi
    Lassas, Matti
    Oksanen, Lauri
    Paternain, Gabriel
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2022, 24 (07) : 2191 - 2232