A reduced-order model for whole-chip thermal analysis of microfluidic lab-on-a-chip systems

被引:12
|
作者
Wang, Yi [1 ]
Song, Hongjun [1 ]
Pant, Kapil [1 ]
机构
[1] CFD Res Corp, Huntsville, AL 35805 USA
关键词
HEAT-TRANSFER; MACROMODELS;
D O I
10.1007/s10404-013-1210-0
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
This paper presents a Krylov subspace projection-based reduced-order model (ROM) for whole microfluidic chip thermal analysis, including conjugate heat transfer. Two key steps in the reduced-order modeling procedure are described in detail: (1) the acquisition of a 3D full-scale computational model in the state-space form to capture the dynamic thermal behavior of the entire microfluidic chip; and (2) the model order reduction using the block Arnoldi algorithm to markedly lower the dimension of the full-scale model. Case studies using practically relevant thermal microfluidic chip are undertaken to establish the capability and to evaluate the computational performance of the reduced-order modeling technique. The ROM is compared against the full-scale model and exhibits good agreement in spatiotemporal thermal profiles (< 0.5 % relative error in pertinent time scales) and over three-orders-of-magnitude acceleration in computational speed. The salient model reusability and real-time simulation capability render it amenable for operational optimization and in-line thermal control and management of microfluidic systems and devices.
引用
收藏
页码:369 / 380
页数:12
相关论文
共 50 条
  • [1] A reduced-order model for whole-chip thermal analysis of microfluidic lab-on-a-chip systems
    Yi Wang
    Hongjun Song
    Kapil Pant
    Microfluidics and Nanofluidics, 2014, 16 : 369 - 380
  • [2] Microfluidic platforms for lab-on-a-chip applications
    Haeberle, Stefan
    Zengerle, Roland
    LAB ON A CHIP, 2007, 7 (09) : 1094 - 1110
  • [3] Integrated Optical Microfluidic Lab-on-a-chip
    Chandrasekaran, Arvind
    Packirisamy, Muthukumaran
    PHOTONICS NORTH 2008, 2008, 7099
  • [4] Microfluidic lab-on-a-chip derivatization for gaseous carbonyl analysis
    Pang, Xiaobing
    Lewis, Alastair C.
    Rodenas-Garcia, Milagros
    JOURNAL OF CHROMATOGRAPHY A, 2013, 1296 : 93 - 103
  • [5] Microfluidic lab-on-a-chip systems based on polymers - fabrication and application
    Guber, A.E. (andreas.guber@imt.fzk.de), 1600, Elsevier (101): : 1 - 3
  • [6] Moving-part-free microfluidic systems for lab-on-a-chip
    Luo, J. K.
    Fu, Y. Q.
    Li, Y.
    Du, X. Y.
    Flewitt, A. J.
    Walton, A. J.
    Milne, W. I.
    JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2009, 19 (05)
  • [7] Integrated "lab-on-a-chip" microfluidic systems for isolation, enrichment, and analysis of cancer biomarkers
    Surappa, Sushruta
    Multani, Priyanka
    Parlatan, Ugur
    Sinawang, Prima Dewi
    Kaifi, Jussuf
    Akin, Demir
    Demirci, Utkan
    LAB ON A CHIP, 2023, 23 (13) : 2942 - 2958
  • [8] Microfluidic and Lab-on-a-Chip Systems for Cutaneous Wound Healing Studies
    Monfared, Ghazal Shabestani
    Ertl, Peter
    Rothbauer, Mario
    PHARMACEUTICS, 2021, 13 (06)
  • [9] Microfluidic lab-on-a-chip systems based on polymers - fabrication and application
    Guber, AE
    Heckele, M
    Herrmann, D
    Muslija, A
    Saile, V
    Eichhorn, L
    Gietzelt, T
    Hoffmann, W
    Hauser, PC
    Tanyanyiwa, J
    Gerlach, A
    Gottschlich, N
    Knebel, G
    CHEMICAL ENGINEERING JOURNAL, 2004, 101 (1-3) : 447 - 453
  • [10] Photonic Lab-on-a-Chip: Integration of Optical Spectroscopy in Microfluidic Systems
    Rodriguez-Ruiz, Isaac
    Ackermann, Tobias N.
    Munoz-Berbel, Xavier
    Llobera, Andreu
    ANALYTICAL CHEMISTRY, 2016, 88 (13) : 6630 - 6637