Asymptotic normality for a non parametric estimator of conditional quantile with left-truncated data

被引:0
|
作者
Yao, Mei [1 ,2 ]
Wang, Jiang-Feng [3 ]
Lin, Lu [1 ]
机构
[1] Shandong Univ, Qilu Secur Inst Financial Studies, Jinan, Peoples R China
[2] Hefei Univ Technol, Sch Math, Hefei, Peoples R China
[3] Zhejiang Gongshang Univ, Dept Stat, Hangzhou 310018, Peoples R China
基金
中国国家自然科学基金;
关键词
Asymptotic normality; conditional quantile; double-kernel estimator; local linear fitting; truncated data; CENSORED-DATA; NONPARAMETRIC-ESTIMATION; TIME-SERIES; REGRESSION; MODEL;
D O I
10.1080/03610926.2015.1124120
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we construct a non parametric estimator of conditional distribution function by the double-kernel local linear approach for left-truncated data, from which we derive the weighted double-kernel local linear estimator of conditional quantile. The asymptotic normality of the proposed estimators is also established. Finite-sample performance of the estimator is investigated via simulation.
引用
收藏
页码:6280 / 6292
页数:13
相关论文
共 50 条