Compactifications of ω and the Banach space c0

被引:4
|
作者
Drygier, Piotr [1 ]
Plebanek, Grzegorz [1 ]
机构
[1] Univ Wroclaw, Inst Matemat, Pl Grunwaldzki 2-4, PL-50384 Wroclaw, Poland
关键词
compactification; remainder; Banach space of continuous functions; projection; regular measure; convergence of measures;
D O I
10.4064/fm263-6-2016
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate for which compactifications gamma omega of the discrete space of natural numbers omega, the natural copy of the Banach space c(0) is complemented in C(gamma omega). We show, in particular, that the separability of the remainder gamma omega\omega is neither sufficient nor necessary for c(0) to be complemented in C (gamma omega) (the latter result is proved under the continuum hypothesis). We analyse, in this context, compactifications of ! related to embeddings of the measure algebra into P (omega)/fin. We also prove that a Banach space C(K) contains a rich family of complemented copies of c(0) whenever the compact space K admits only measures of countable Maharam type.
引用
收藏
页码:165 / 186
页数:22
相关论文
共 50 条
  • [1] RENORMING THE BANACH-SPACE C0
    JAMES, RC
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1980, 80 (04) : 631 - 634
  • [2] On automorphisms of the Banach space l∞/c0
    Koszmider, Piotr
    Rodriguez-Porras, Cristobal
    FUNDAMENTA MATHEMATICAE, 2016, 235 (01) : 49 - 99
  • [3] l∞-sums and the Banach space l∞/c0
    Brech, Christina
    Koszmider, Piotr
    FUNDAMENTA MATHEMATICAE, 2014, 224 (02) : 175 - 185
  • [4] The Banach space c0 is determined by its metric
    Godefroy, G
    Kalton, NJ
    Lancien, G
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1998, 327 (09): : 817 - 822
  • [5] A c0 saturated Banach space with tight structure
    Argyros, Spiros A.
    Petsoulas, Giorgos
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 385 (02) : 874 - 894
  • [6] Set theoretical aspects of the Banach space l∞/c0
    Grzech, M
    ANNALS OF PURE AND APPLIED LOGIC, 2004, 126 (1-3) : 301 - 308
  • [7] On the Banach lattice c0
    Aviles, Antonio
    Martinez-Cervantes, Gonzalo
    Rodriguez Abellan, Jose David
    REVISTA MATEMATICA COMPLUTENSE, 2021, 34 (01): : 203 - 213
  • [8] The Banach spaces l∞(c0) and c0(l∞) are not isomorphic
    Cembranos, Pilar
    Mendoza, Jose
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 367 (02) : 461 - 463
  • [10] ON THE PRIMARINESS OF THE BANACH-SPACE L-INFINITY/C0
    DREWNOWSKI, L
    ROBERTS, JW
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 112 (04) : 949 - 957