Monitoring the Depth of Anesthesia Using Discrete Wavelet Transform and Power Spectral Density

被引:0
|
作者
Nguyen-Ky, T. [1 ]
Wen, Peng [1 ]
Li, Yan [1 ]
机构
[1] Univ So Queensland, Toowoomba, Qld 4350, Australia
关键词
Depth of anesthesia; wavelet transform; power spectral density; BISPECTRAL INDEX;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This method combines wavelet techniques and power spectral density to monitor the depth of anesthesia (DOA) based on simplified EEG signals. After decomposing electroencephalogram (EEG) signals, the power spectral density is chosen as a feature function for coefficients of discrete wavelet transform. By computing the mean and standard deviation of the power spectral density values, we can classify the EEG signals to three classes, corresponding with the BIS values of 0 to 40, 40 to 60, and 60 to 100. Finally, three linear functions (f(1)((S) over bar (j)), f(2)((S) over bar (j)), f(3)((S) over bar (j))) are proposed to compute DOA values
引用
收藏
页码:350 / 357
页数:8
相关论文
共 50 条
  • [1] Measuring and Reflecting Depth of Anesthesia Using Wavelet and Power Spectral Density
    Tai Nguyen-Ky
    Wen, Peng
    Li, Yan
    Gray, Robert
    IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, 2011, 15 (04): : 630 - 639
  • [2] Detection of Epileptic Seizure Using a Combination of Discrete Wavelet Transform and Power Spectral Density
    Dhar, Puja
    Garg, Vijay Kumar
    INTERNATIONAL CONFERENCE ON INNOVATIVE COMPUTING AND COMMUNICATIONS, ICICC 2022, VOL 3, 2023, 492 : 637 - 646
  • [3] Power Quality Monitoring and Compression Using the Discrete Wavelet Transform
    Brindha, S.
    Sundararajan, D.
    PROCEEDINGS OF THE 2013 INTERNATIONAL CONFERENCE ON ADVANCED COMPUTING & COMMUNICATION SYSTEMS (ICACCS), 2013,
  • [4] Enhanced estimation of power spectral density of noise using the wavelet transform
    Sysel, Petr
    Smekal, Zdenek
    PERSONAL WIRELESS COMMUNICATIONS, 2007, 245 : 521 - +
  • [5] Measuring the Depth of Anesthesia Using Ordinal Power Spectral Density of Electroencephalogram
    Choi, Ho-Ik
    Noh, Gyu-Jeong
    Shin, Hyun-Chool
    IEEE ACCESS, 2020, 8 : 50431 - 50438
  • [6] Design and implementation of a novel power factor monitoring unit using discrete wavelet transform
    Sarkar, Arghya
    Sengupta, S.
    IET SCIENCE MEASUREMENT & TECHNOLOGY, 2009, 3 (01) : 2 - 12
  • [7] Extraction the unbalance features of spindle system using wavelet transform and power spectral density
    Chen, Dongju
    Fan, Jinwei
    Zhang, Feihu
    MEASUREMENT, 2013, 46 (03) : 1279 - 1290
  • [8] A higher density discrete wavelet transform
    Selesnick, Ivan W.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2006, 54 (08) : 3039 - 3048
  • [9] Power Spectral Density Estimation of Seismic Wave Based on Wavelet Transform
    Bai Quan
    Zhu Fusheng
    Kang Yumei
    Bian Jingmei
    2008 CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-11, 2008, : 4600 - 4603
  • [10] Power system fault monitoring using wavelet transform
    Charfi, F
    Al-Haddad, K
    François, B
    PESC 04: 2004 IEEE 35TH ANNUAL POWER ELECTRONICS SPECIALISTS CONFERENCE, VOLS 1-6, CONFERENCE PROCEEDINGS, 2004, : 919 - 924