Neumann eigenvalue problems on the exterior domains

被引:1
|
作者
Anoop, T., V [1 ]
Biswas, Nirjan [1 ]
机构
[1] Indian Inst Technol Madras, Dept Math, Chennai 600036, Tamil Nadu, India
关键词
Neumann eigenvalue problem; p-Laplacian; Exterior domain; Principal eigenvalue; Embeddings of W-1; W-p; (Omega); PRINCIPAL EIGENVALUES; INEQUALITY;
D O I
10.1016/j.na.2019.05.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For p is an element of(1, infinity), we consider the following weighted Neumann eigenvalue problem on B-1(c), the exterior of the closed unit ball in R-N: -Delta(p)phi = lambda(g)vertical bar phi vertical bar(p-2)phi in B-1(c), partial derivative phi/partial derivative nu = 0 on partial derivative B-1, where Delta(p) is the p-Laplace operator and g is an element of L-loc(1) (B-1(c)) is an indefinite weight function. Depending on the values of p and the dimension N, we take g in certain Lorentz spaces or weighted Lebesgue spaces and show that (0.1) admits an unbounded sequence of positive eigenvalues that includes a unique principal eigenvalue. For this purpose, we establish the compact embeddings of W-1,W-p (B-1(c)) into L-p (B-1(c), vertical bar g vertical bar) for g in certain weighted Lebesgue spaces. For N > p, we also provide an alternate proof for the embedding of W-1,W-p (B-1(c)) into the Lorentz space L-p*(,p) (B-1(c)). Further, we show that the set of all eigenvalues of (0.1) is closed. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:339 / 351
页数:13
相关论文
共 50 条