On the Computational Modeling of Lipid Bilayers Using Thin-Shell Theory

被引:13
|
作者
Sauer, Roger A. [1 ]
机构
[1] Rhein Westfal TH Aachen, Aachen Inst Adv Study Computat Engn Sci AICES, Templergraben 55, D-52056 Aachen, Germany
来源
ROLE OF MECHANICS IN THE STUDY OF LIPID BILAYERS | 2018年 / 577卷
关键词
FINITE-ELEMENT-METHOD; RED-BLOOD-CELL; MEMBRANE CURVATURE; ISOGEOMETRIC ANALYSIS; LIQUID-MEMBRANES; FORMULATION; TENSION; VESICLES; SHAPE; EQUILIBRIUM;
D O I
10.1007/978-3-319-56348-0_5
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
This chapter discusses the computational modeling of lipid bilayers based on the nonlinear theory of thin shells. Several computational challenges are identified and various theoretical and computational ingredients are proposed in order to counter them. In particular, C-1-continuous, NURBS-based, LBB-conforming surface finite element discretizations are discussed. The constitutive behavior of the bilayer is based on in-plane viscosity and (near) area-incompressibility combined with the Helfrich bending model. Various shear stabilization techniques are proposed for quasi-static computations. All ingredients are formulated in the curvilinear coordinate system characterizing general surface parameterizations. The consistent linearization of the formulation is presented, and several numerical examples are shown.
引用
收藏
页码:221 / 286
页数:66
相关论文
共 50 条
  • [1] THIN-SHELL
    不详
    MECHANICAL ENGINEERING, 2014, 136 (12) : 14 - 15
  • [2] EXACTNESS OF ONE VERSION OF THIN-SHELL THEORY
    GORDEZIA.DG
    DOKLADY AKADEMII NAUK SSSR, 1974, 216 (04): : 751 - 754
  • [3] Thin-shell wormhole in the heterotic string theory
    Rahaman, F.
    Chakraborty, S.
    Kalam, M.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2007, 16 (10): : 1669 - 1681
  • [4] Stability of charged thin-shell and thin-shell wormholes: a comparison
    Sharif, M.
    Javed, Faisal
    PHYSICA SCRIPTA, 2021, 96 (05)
  • [5] Nonlinear ferromagnetic shield modeling by the thin-shell approximation
    Bottauscio, Oriano
    Chiampi, Mario
    Manzin, Alessandra
    IEEE TRANSACTIONS ON MAGNETICS, 2006, 42 (10) : 3144 - 3146
  • [6] Thin-shell theory for rotationally invariant random simplices
    Heiny, Johannes
    Johnston, Samuel
    Prochno, Joscha
    ELECTRONIC JOURNAL OF PROBABILITY, 2022, 27
  • [7] The accuracy of thin-shell theory in estimation of aneurysm rupture
    Zendehbudi, Gholam Reza
    Kazemi, Ali
    JOURNAL OF BIOMECHANICS, 2007, 40 (14) : 3230 - 3235
  • [8] Thin-shell wormholes in neo-Newtonian theory
    Ovgun, Ali
    Salako, Ines G.
    MODERN PHYSICS LETTERS A, 2017, 32 (23)
  • [9] Extension of thin-shell formulation to ferromagnetic heterogeneous shield modeling
    Bottauscio, Oriano
    Piat, Valeria Chiado
    Chiampi, Mario
    Codegone, Marco
    Manzin, Alessandra
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2008, 320 (20) : E1020 - E1023
  • [10] Thin-shell modeling of neotectonics in the Azores-Gibraltar region
    Jiménez-Munt, I
    Bird, P
    Fernàndez, M
    GEOPHYSICAL RESEARCH LETTERS, 2001, 28 (06) : 1083 - 1086