An improved estimator of the density function at the boundary

被引:65
|
作者
Zhang, S [1 ]
Karunamuni, RJ
Jones, MC
机构
[1] Univ Alaska, Dept Math Sci, Fairbanks, AK 99775 USA
[2] Univ Alberta, Dept Math Sci, Edmonton, AB T6G 2G1, Canada
[3] Open Univ, Dept Stat, Milton Keynes MK7 6AA, Bucks, England
关键词
density estimation; mean squared error; pseudodata; reflection; transformation;
D O I
10.2307/2669937
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose a new method of boundary correction for kernel density estimation. The technique is a kind of generalized reflection method involving reflecting a transformation of the data. The transformation depends on a pilot estimate of the logarithmic derivative of the density at the boundary. In simulations, the new method is seen to clearly outperform an earlier generalized reflection idea. It also has overall advantages over boundary kernel methods and a nonnegative adaptation thereof, although the latter are competitive in some situations. We also present the theory underlying the new methodology.
引用
收藏
页码:1231 / 1241
页数:11
相关论文
共 50 条
  • [1] Boundary estimation with the fuzzy set density estimator
    Jesús Fajardo
    Pedro Harmath
    METRON, 2021, 79 : 285 - 302
  • [2] Boundary estimation with the fuzzy set density estimator
    Fajardo, Jesus
    Harmath, Pedro
    METRON-INTERNATIONAL JOURNAL OF STATISTICS, 2021, 79 (03): : 285 - 302
  • [3] Bernstein estimator for unbounded density function
    Bouezmarni, T.
    Rolin, J. M.
    JOURNAL OF NONPARAMETRIC STATISTICS, 2007, 19 (03) : 145 - 161
  • [4] Some improvements on a boundary corrected kernel density estimator
    Karunamuni, R. J.
    Zhang, S.
    STATISTICS & PROBABILITY LETTERS, 2008, 78 (05) : 499 - 507
  • [5] Consistency of the beta kernel density function estimator
    Bouezmarni, T
    Rolin, JM
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2003, 31 (01): : 89 - 98
  • [6] Random errors for an improved frequency response function estimator
    Jang, SH
    Ih, JG
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 1997, 11 (02) : 323 - 326
  • [7] A data-driven kernel estimator of the density function
    Karczewski, Maciej
    Michalski, Andrzej
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2022, 92 (17) : 3529 - 3541
  • [8] Properties of convergence of a fuzzy set estimator of the density function
    Fajardo, Jesus A.
    Rios, Ricardo R.
    Rodriguez, Luis A.
    BRAZILIAN JOURNAL OF PROBABILITY AND STATISTICS, 2012, 26 (02) : 208 - 217
  • [9] A NEW NONPARAMETRIC DENSITY-FUNCTION ESTIMATOR WITH APPLICATIONS
    SWANEPOEL, JWH
    SOUTH AFRICAN STATISTICAL JOURNAL, 1984, 18 (02) : 203 - 203
  • [10] On Consistency of the Nearest Neighbor Estimator of the Density Function and Its Applications
    Wu, Yi
    Wang, Xue Jun
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2019, 35 (05) : 703 - 720