Empirical Study of Simultaneous Perturbation Particle Swarm Optimization

被引:0
|
作者
Maeda, Yutaka [1 ]
Matsushita, Naoto [1 ]
机构
[1] Kansai Univ, Dept Elect & Elect Engn, Suita, Osaka, Japan
关键词
Particle swarm optimization; Simultaneous Perturbation; function optimization;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we propose some different optimization schemes which are combinations of the particle swarm optimization and the simultaneous perturbation optimization method. The proposed schemes can utilize local information of an objective function and global shape of the function at the same time. These characteristics are from the simultaneous perturbation optimization method and the particle swarm optimization. The schemes have good properties of global search and efficient local search capability. Moreover, the schemes themselves are very simple and easy to implement. These methods only require values of the function similar to the original particle swarm optimization and the simultaneous perturbation method. The proposed schemes are investigated using some test function to know convergence properties such as convergence rate or convergence speed.
引用
收藏
页码:2444 / 2447
页数:4
相关论文
共 50 条
  • [1] On Simultaneous Perturbation Particle Swarm Optimization
    Maeda, Yutaka
    Matsushita, Naoto
    Miyoshi, Seiji
    Hikawa, Hiroomi
    2009 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-5, 2009, : 3271 - +
  • [2] Simultaneous perturbation particle swarm optimization
    Maeda, Yutaka
    Kuratani, Toru
    2006 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-6, 2006, : 672 - +
  • [3] Combination of Particle Swarm Optimization and Simultaneous Perturbation
    Maeda, Yutaka
    Matsushita, Naoto
    2008 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-8, 2008, : 1380 - 1385
  • [4] Simultaneous perturbation particle swarm optimization using FPGA
    Maeda, Yutaka
    Matsushita, Naoto
    2007 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-6, 2007, : 2694 - 2699
  • [5] Empirical Study of Segment Particle Swarm Optimization and Particle Swarm Optimization Algorithms
    Azrag, Mohammed Adam Kunna
    Kadir, Tuty Asmawaty Abdul
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2019, 10 (08) : 480 - 485
  • [6] Empirical Study of Particle Swarm Optimization Mutation Operators
    Jancauskas, Vytautas
    BALTIC JOURNAL OF MODERN COMPUTING, 2014, 2 (04): : 199 - 214
  • [7] Empirical study of an unconstrained modified particle swarm optimization
    Moore, Phillip W.
    Venayagamoorthy, Ganesh K.
    2006 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-6, 2006, : 1462 - +
  • [8] Stochastic approximation driven particle swarm optimization with simultaneous perturbation - Who will guide the guide?
    Kiranyaz, Serkan
    Ince, Turker
    Gabbouj, Moncef
    APPLIED SOFT COMPUTING, 2011, 11 (02) : 2334 - 2347
  • [9] Empirical study on rotation and information exchange in particle swarm optimization
    Santos, Reginaldo
    Borges, Gilvan
    Santos, Adam
    Silva, Moises
    Sales, Claudomiro
    Costa, Joao C. W. A.
    SWARM AND EVOLUTIONARY COMPUTATION, 2019, 48 : 312 - 328
  • [10] An empirical study on the settings of control coefficients in Particle Swarm Optimization
    Kwok, N. M.
    Liu, D. K.
    Tan, K. C.
    Ha, Q. P.
    2006 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-6, 2006, : 823 - +