Exploring sequence/folding space:: Folding studies on multiple hydrophobic core mutants of ubiquitin

被引:22
作者
Benítez-Cardoza, CG
Stott, K
Hirshberg, M
Went, HM
Woolfson, DN
Jackson, SE
机构
[1] Univ Cambridge, Dept Chem, Cambridge CB2 1EW, England
[2] Univ Cambridge, Dept Biochem, Cambridge CB2 1GA, England
[3] Univ Sussex, Sch Life Sci, Brighton BN1 9QG, E Sussex, England
关键词
D O I
10.1021/bi0361620
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The stability, dynamic, and structural properties of ubiquitin and two Multiple hydrophobic core mutants were studied. One of the mutants (U4) has seven substitutions in the hydrophobic core (M1L, I3L, V5I, I3F, L15V. V17M, and V26L). On average, its side chains are larger than the wild-type, and it can thus be thought of as having an overpacked core. The other mutant (U7) has two substitutions (I3V and I13V). On average, it has smaller side chains than the wild-type, and it can therefore be considered to be underpacked. The three proteins are well-folded and show similar backbone dynamics (T-1, T-2, and HNOE values), indicating that the regular secondary structure extends over the same residue ranges. The crystallographic structure of U4 was determined. The final R-factor and R-free are 0.198 and 0.248. respectively, at 2.18 Angstrom resolution. The structure of U4 is very similar to wild-type ubiquitin. Remarkably. there are almost no changes in the positions of the C-alpha atoms along the entire backbone, and the hydrogen-bonding network is maintained. The mutations of the hydrophobic core are accommodated by small movements of side chains in the core of mutated and nonmutated residues. Unfolding and refolding kinetic studies revealed that U4 unfolds with the highest rates; however, its refolding rate constants are very similar to those of the wild-type protein. Conversely, U7 seems to be the most destabilized protein; its refolding rate constant is smaller than the other two proteins. This was confirmed by stopped-flow techniques and by H/D exchange methodologies. This work illustrates the possibility of repacking the hydrophobic core of small proteins and has important implications in the de novo design of stable proteins.
引用
收藏
页码:5195 / 5203
页数:9
相关论文
共 57 条
[1]   Microsecond protein folding kinetics from native-state hydrogen exchange [J].
Arrington, CB ;
Robertson, AD .
BIOCHEMISTRY, 1997, 36 (29) :8686-8691
[2]   PRIMARY STRUCTURE EFFECTS ON PEPTIDE GROUP HYDROGEN-EXCHANGE [J].
BAI, YW ;
MILNE, JS ;
MAYNE, L ;
ENGLANDER, SW .
PROTEINS-STRUCTURE FUNCTION AND GENETICS, 1993, 17 (01) :75-86
[3]   THE CCP4 SUITE - PROGRAMS FOR PROTEIN CRYSTALLOGRAPHY [J].
BAILEY, S .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1994, 50 :760-763
[4]   NATURAL ABUNDANCE N-15 NMR BY ENHANCED HETERONUCLEAR SPECTROSCOPY [J].
BODENHAUSEN, G ;
RUBEN, DJ .
CHEMICAL PHYSICS LETTERS, 1980, 69 (01) :185-189
[5]  
BOUCHER W, 1993, DEP BIOCH
[6]   EARLY HYDROGEN-BONDING EVENTS IN THE FOLDING REACTION OF UBIQUITIN [J].
BRIGGS, MS ;
RODER, H .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1992, 89 (06) :2017-2021
[7]   The energy landscape of a fast-folding protein mapped by Ala->Gly substitutions [J].
Burton, RE ;
Huang, GS ;
Daugherty, MA ;
Calderone, TL ;
Oas, TG .
NATURE STRUCTURAL BIOLOGY, 1997, 4 (04) :305-310
[8]   The role of a β-bulge in the folding of the β-hairpin structure in ubiquitin [J].
Chen, PY ;
Gopalacushina, BG ;
Yang, CC ;
Chan, SI ;
Evans, PA .
PROTEIN SCIENCE, 2001, 10 (10) :2063-2074
[9]   DISSECTING THE STRUCTURE OF A PARTIALLY FOLDED PROTEIN - CIRCULAR-DICHROISM AND NUCLEAR-MAGNETIC-RESONANCE STUDIES OF PEPTIDES FROM UBIQUITIN [J].
COX, JPL ;
EVANS, PA ;
PACKMAN, LC ;
WILLIAMS, DH ;
WOOLFSON, DN .
JOURNAL OF MOLECULAR BIOLOGY, 1993, 234 (02) :483-492
[10]   DE-NOVO DESIGN OF THE HYDROPHOBIC CORES OF PROTEINS [J].
DESJARLAIS, JR ;
HANDEL, TM .
PROTEIN SCIENCE, 1995, 4 (10) :2006-2018