Modeling of the unsteady force for shock-particle interaction

被引:71
|
作者
Parmar, M. [1 ]
Haselbacher, A. [1 ]
Balachandar, S. [1 ]
机构
[1] Univ Florida, Dept Mech & Aerosp Engn, Gainesville, FL 32611 USA
基金
美国国家科学基金会;
关键词
Shock-particle interaction; Multiphase flow; Drag force; Unsteady flow; Compressible flow; FINITE REYNOLDS-NUMBER; DRAG COEFFICIENT; NONSTATIONARY FLOW; SPHERICAL-PARTICLE; RIGID SPHERE; DUSTY-GAS; TUBE; MOTION; WAVES; ACCELERATION;
D O I
10.1007/s00193-009-0206-x
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The interaction between a particle and a shock wave leads to unsteady forces that can be an order of magnitude larger than the quasi-steady force in the flow field behind the shock wave. Simple models for the unsteady force have so far not been proposed because of the complicated flow field during the interaction. Here, a simple model is presented based on the work of Parmar et al. (Phil Trans R Soc A 366:2161-2175, 2008). Comparisons with experimental and computational data for both stationary spheres and spheres set in motion by shock waves show good agreement in terms of the magnitude of the peak and the duration of the unsteady force.
引用
收藏
页码:317 / 329
页数:13
相关论文
共 50 条
  • [1] Modeling of the unsteady force for shock–particle interaction
    M. Parmar
    A. Haselbacher
    S. Balachandar
    Shock Waves, 2009, 19 : 317 - 329
  • [2] Importance of unsteady contributions to force and heating for particles in compressible flows Part 1: Modeling and analysis for shock-particle interaction
    Ling, Y.
    Haselbacher, A.
    Balachandar, S.
    INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 2011, 37 (09) : 1026 - 1044
  • [3] Influence of baroclinic vorticity production on unsteady drag coefficient in shock-particle interaction
    Fujisawa, K.
    Jackson, T. L.
    Balachandar, S.
    JOURNAL OF APPLIED PHYSICS, 2019, 125 (08)
  • [4] Compressible pairwise interaction extended point-particle model for force prediction of shock-particle bed interaction
    Hsiao, Smyther S.
    Salari, Kambiz
    Balachandar, S.
    PHYSICAL REVIEW FLUIDS, 2023, 8 (05)
  • [5] IMPORTANCE OF UNSTEADY FORCE AND HEATING TO PARTICLE INTERACTION WITH SHOCK/DETONATION WAVES
    Ling, Yue
    Haselbacher, Andreas
    Balachandar, S.
    SHOCK COMPRESSION OF CONDENSED MATTER - 2011, PTS 1 AND 2, 2012, 1426
  • [6] Investigation and quantification of flow unsteadiness in shock-particle cloud interaction
    Hosseinzadeh-Nik, Zahra
    Subramaniam, Shankar
    Regele, Jonathan D.
    INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 2018, 101 : 186 - 201
  • [7] DNS Study of Initial-Stage Shock-Particle Curtain Interaction
    Jiang, Ling-Jie
    Deng, Xiao-Long
    Tao, Liang
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2018, 23 (04) : 1202 - 1222
  • [8] Neighbor-induced unsteady force in the interaction of a cylindrical shock wave with an annular particle cloud
    Briney, Sam
    Osnes, Andreas N.
    Vartdal, Magnus
    Jackson, Thomas L.
    Balachandar, S.
    PHYSICAL REVIEW FLUIDS, 2024, 9 (02)
  • [9] Sharp-Interface Immersed-Boundary Method for Compressible Flows with Shock-Particle Interaction
    Borazjani, Iman
    AIAA JOURNAL, 2021, 59 (04) : 1169 - 1183
  • [10] Evaluation of multifidelity surrogate modeling techniques to construct closure laws for drag in shock-particle interactions
    Sen, Oishik
    Gaul, Nicholas J.
    Choi, K. K.
    Jacobs, Gustaaf
    Udaykumar, H. S.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 371 : 434 - 451