On information fusion for reliability estimation with multifidelity models

被引:1
|
作者
Proppe, Carsten [1 ]
Kaupp, Jonas [1 ]
机构
[1] Karlsruhe Inst Technol, Chair Engn Mech, Kaiserstr 10,Bdg 10-23, D-76131 Karlsruhe, Germany
关键词
Multifidelity; Model hierarchy; Information fusion; Reliability estimation; Moving particles algorithm; Importance sampling; MULTILEVEL MONTE-CARLO; FAILURE PROBABILITY; SIMULATION;
D O I
10.1016/j.probengmech.2022.103291
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Multifidelity models attempt to reduce the computational effort by combining simulation models of different approximation quality and from different sources. Information fusion combines outputs from a model hierarchy in order to obtain efficient estimators for a quantity of interest. In this paper, information fusion is applied to reliability estimation. To this end, efficient multifidelity estimators for the probability of failure are developed by combining additive and multiplicative information fusion with importance sampling and importance splitting (notably the moving particles method). Importance sampling and importance splitting based multifidelity reliability estimators are compared focusing on relative error and coefficient of variation.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Multifidelity probability estimation via fusion of estimators
    Kramer, Boris
    Marques, Alexandre Noll
    Peherstorfer, Benjamin
    Villa, Umberto
    Willcox, Karen
    JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 392 : 385 - 402
  • [2] Bayesian Estimation for Stochastic Gene Expression Using Multifidelity Models
    Vo, Huy D.
    Fox, Zachary
    Baetica, Ania
    Munsky, Brian
    JOURNAL OF PHYSICAL CHEMISTRY B, 2019, 123 (10): : 2217 - 2234
  • [3] Multiple models of information fusion processes: Quality definition and estimation
    Sokolov, Boris V.
    Zelentsov, Vyacheslav A.
    Yusupov, Rafael M.
    Merkuryev, Yuri A.
    JOURNAL OF COMPUTATIONAL SCIENCE, 2014, 5 (03) : 380 - 386
  • [4] INFORMATION FUSION MULTIPLE-MODELS QUALITY DEFINITION AND ESTIMATION
    Sokolov, Boris V.
    Zelentsov, Vyacheslav A.
    Yusupov, Rafael M.
    Merkuryev, Yuri A.
    14TH INTERNATIONAL CONFERENCE ON HARBOR, MARITIME AND MULTIMODAL LOGISTICS MODELLING AND SIMULATION (HMS 2012), 2012, : 102 - 111
  • [5] Multifidelity Monte Carlo Estimation with Adaptive Low-Fidelity Models
    Peherstorfer, Benjamin
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2019, 7 (02): : 579 - 603
  • [6] Predicting Crystallization Tendency of Polymers Using Multifidelity Information Fusion and Machine Learning
    Venkatram, Shruti
    Batra, Rohit
    Chen, Lihua
    Kim, Chiho
    Shelton, Madeline
    Ramprasad, Rampi
    JOURNAL OF PHYSICAL CHEMISTRY B, 2020, 124 (28): : 6046 - 6054
  • [7] MULTIFIDELITY INFORMATION FUSION ALGORITHMS FOR HIGH-DIMENSIONAL SYSTEMS AND MASSIVE DATA SETS
    Perdikaris, Paris
    Venturi, Daniele
    Karniadakis, George Em
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2016, 38 (04): : B521 - B538
  • [8] Multifidelity Data Fusion for the Estimation of Static Stiffness of Suction Caisson Foundations in Layered Soil
    Suryasentana, Stephen K.
    Sheil, Brian B.
    Stuyts, Bruno
    JOURNAL OF GEOTECHNICAL AND GEOENVIRONMENTAL ENGINEERING, 2024, 150 (08)
  • [9] Multifidelity Information Fusion with Machine Learning: A Case Study of Dopant Formation Energies in Hafnia
    Batra, Rohit
    Pilania, Ghanshyam
    Uberuaga, Blas P.
    Ramprasad, Rampi
    ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (28) : 24906 - 24918
  • [10] Research of the Reliability Coefficient in Information Fusion
    Xia Fei
    Zhang Hao
    Peng Daogang
    Li Hui
    Xu Longhu
    Yang Li
    PROCEEDINGS OF THE 2009 INTERNATIONAL CONFERENCE ON SIGNAL ACQUISITION AND PROCESSING, 2009, : 85 - 88