Topology Optimization for Continua Considering Global Displacement Constraint

被引:1
|
作者
Yi, Jijun [1 ,2 ]
Zeng, Tao [1 ,2 ]
Rong, Jianhua
机构
[1] Cent S Univ, Sch Mech & Elect Engn, Changsha, Hunan, Peoples R China
[2] Changsha Univ Sci & Technol, Key Lab Lightweight & Reliabil Technol Engn Vehic, Changsha, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
topology optimization; global displacement constraint; nodal density variable; p-norm displacement; LEVEL SET METHOD; NODAL DENSITY; INTERPOLATION; VARIABLES; FIELD;
D O I
10.5545/sv-jme.2013.945
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This paper presents a topology optimization method for continua that minimizes the volume subject to global displacement constraint. The method uses the p-norm displacement to represent the equivalent maximum displacement so as to avoid non-differentiability of the maximum function. Using nodal densities as design variables, a new topology optimization technique for controlling the global maximum displacement precisely is developed. Several examples are presented to demonstrate the effectiveness of the proposed method for achieving convergent optimal solutions of structures with global displacement constraint.
引用
收藏
页码:43 / 50
页数:8
相关论文
共 50 条
  • [1] Topology optimization method for local relative displacement difference minimization considering stress constraint
    Gu, Jinyu
    Gui, Tan
    Yuan, Qingwen
    Qu, Jinping
    Wang, Yingjun
    ENGINEERING STRUCTURES, 2024, 304
  • [2] Topology optimization of continua considering mass and inertia characteristics
    Zhou, Pingzhang
    Ou, Guotao
    Du, Jianbin
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2019, 60 (02) : 429 - 442
  • [3] Topology optimization of continua considering mass and inertia characteristics
    Pingzhang Zhou
    Guotao Ou
    Jianbin Du
    Structural and Multidisciplinary Optimization, 2019, 60 : 429 - 442
  • [4] Structural topology optimization considering connectivity constraint
    Quhao Li
    Wenjiong Chen
    Shutian Liu
    Liyong Tong
    Structural and Multidisciplinary Optimization, 2016, 54 : 971 - 984
  • [5] Structural topology optimization considering connectivity constraint
    Li, Quhao
    Chen, Wenjiong
    Liu, Shutian
    Tong, Liyong
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2016, 54 (04) : 971 - 984
  • [6] A bionic topology optimization method with an additional displacement constraint
    Zhong, Yuhai
    Feng, Huashan
    Wang, Hongbo
    Wang, Runxiao
    Yu, Weiwei
    ELECTRONIC RESEARCH ARCHIVE, 2022, 31 (02): : 754 - 769
  • [7] Topology optimization considering overhang constraint in additive manufacturing
    Zhang, Kaiqing
    Cheng, Gengdong
    Xu, Liang
    COMPUTERS & STRUCTURES, 2019, 212 : 86 - 100
  • [8] Evolutionary topology optimization of continuum structures with an additional displacement constraint
    Huang, X.
    Xie, Y. M.
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2010, 40 (1-6) : 409 - 416
  • [9] Evolutionary topology optimization of continuum structures with an additional displacement constraint
    X. Huang
    Y. M. Xie
    Structural and Multidisciplinary Optimization, 2010, 40 : 409 - 416
  • [10] Structural Topology Optimization with Stress Constraint Considering Loading Uncertainties
    Pinter, Erika
    Lengyel, Andras
    Logo, Janos
    PERIODICA POLYTECHNICA-CIVIL ENGINEERING, 2015, 59 (04): : 559 - 565