A Gneiting-Like Method for Constructing Positive Definite Functions on Metric Spaces

被引:0
|
作者
Barbosa, Victor S. [1 ]
Menegatto, Valdir A. [2 ]
机构
[1] Ctr Tecnol Joinville UFSC, Rua Dona Francisca 8300,Bloco U, BR-89219600 Joinville, SC, Brazil
[2] Univ Sao Paulo, Inst Ciencias Matemat & Comp, Caixa Postal 668, BR-13560970 Sao Carlos, SP, Brazil
关键词
positive definite functions; generalized Stieltjes functions; Bernstein functions; Gneiting's model; products of metric spaces; COVARIANCE FUNCTIONS; SCHOENBERGS THEOREM; PRODUCTS; KERNELS;
D O I
10.3842/SIGMA.2020.117
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is concerned with the construction of positive definite functions on a cartesian product of quasi-metric spaces using generalized Stieltjes and complete Bernstein functions. The results we prove are aligned with a well-established method of T. Gneiting to construct space-time positive definite functions and its many extensions. Necessary and sufficient conditions for the strict positive definiteness of the models are provided when the spaces are metric.
引用
收藏
页数:15
相关论文
共 50 条