Quasi-trees, namely graphs with tree-like structure, appear in many application domains, including bioinformatics and computer networks. Our new SPF approach exploits the structure of these graphs with a two-level approach to drawing, where the graph is decomposed into a tree of biconnected components. The low-level biconnected components are drawn with a force-directed approach that uses a spanning tree skeleton as a starting point for the layout. The higher-level structure of the graph is a true tree with meta-nodes of variable size that contain each biconnected component. That tree is drawn with a new area-aware variant of a tree drawing algorithm that handles high-degree nodes gracefully, at the cost of allowing edge-node overlaps. SPF performs an order of magnitude faster than the best previous approaches, while producing drawings of commensurate or improved quality.