Prediction of physicochemical properties of organic molecules using van der Waals surface electrostatic potentials

被引:37
|
作者
Kim, CK [1 ]
Lee, KA
Hyun, KH
Park, HJ
Kwack, IY
Kim, CK [1 ]
Lee, HW
Lee, BS
机构
[1] Inha Univ, Dept Chem, Inchon 402751, South Korea
[2] Inha Univ, High Energy Mat Res Ctr, Inchon 402751, South Korea
关键词
generalized interaction properties function; molecular surface electrostatic potential; van der Waals surface; high energetic materials; prediction of physicochemical parameters;
D O I
10.1002/jcc.20129
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The generalized interaction properties function (GIPF) methodology developed by Politzer and coworkers, which calculated molecular surface electrostatic potential (MSESP) on a density envelope surface, was modified by calculating the MSESP on a much simpler van der Waals (vdW) surface of a molecule. In this work, vdW molecular surfaces were obtained from the fully optimized structures confirmed by frequency calculations at B3LYP/6-31G(d) level of theory. Multiple linear regressions for normal boiling point, heats of vaporization, heats of sublimation, heats of fusion, liquid density, and solid density were performed using GIPF variables from vdW model surface. Results from our model are compared with those from Politzer and coworkers. The surface-dependent beta (and gamma) values are dependent on the surface models but the surface-independent alpha and regression coefficients (r) are constant when vdW surface and density surface with 0.001 a.u. contour value are compared. This interesting phenomenon is explained by linear dependencies of GIPF variables. (C) 2004 Wiley Periodicals, Inc.
引用
收藏
页码:2073 / 2079
页数:7
相关论文
共 50 条
  • [1] Packing of planar organic molecules:: Interplay of van der waals and electrostatic interaction
    Kaefer, Daniel
    El Helou, Mira
    Gemel, Christian
    Witte, Gregor
    CRYSTAL GROWTH & DESIGN, 2008, 8 (08) : 3053 - 3057
  • [2] Role of van der Waals forces in the adsorption and diffusion of organic molecules on an insulating surface
    Pakarinen, O. H.
    Mativetsky, J. M.
    Gulans, A.
    Puska, M. J.
    Foster, A. S.
    Grutter, P.
    PHYSICAL REVIEW B, 2009, 80 (08)
  • [3] The surface properties of a van der Waals fluid
    Hadjiconstantinou, NG
    Garcia, AL
    Alder, BJ
    PHYSICA A, 2000, 281 (1-4): : 337 - 347
  • [4] VAN DER WAALS POTENTIALS FOR SIMPLE POLAR MOLECULES INTERACTING WITH GRAPHITE
    CROWELL, AD
    JOURNAL OF CHEMICAL PHYSICS, 1968, 49 (02): : 892 - &
  • [5] General van der Waals potential for common organic molecules
    Qi, Rui
    Wang, Qiantao
    Ren, Pengyu
    BIOORGANIC & MEDICINAL CHEMISTRY, 2016, 24 (20) : 4911 - 4919
  • [6] DO ELECTROSTATIC INTERACTIONS PREDICT STRUCTURES OF VAN DER WAALS MOLECULES - COMMENTS
    BAIOCCHI, FA
    REIHER, W
    KLEMPERER, W
    JOURNAL OF CHEMICAL PHYSICS, 1983, 79 (12): : 6428 - 6429
  • [7] Molecular Surfaces, van der Waals Radii and Electrostatic Potentials in Relation to Noncovalent Interactions
    Murray, Jane S.
    Politzer, Peter
    CROATICA CHEMICA ACTA, 2009, 82 (01) : 267 - 275
  • [8] Computational investigation of van der Waals corrections in the adsorption properties of molecules on the Cu(111) surface
    Bartaquim, Eduardo O.
    Bezerra, Raquel C.
    Bittencourt, Albert F. B.
    Da Silva, Juarez L. F.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2022, 24 (34) : 20294 - 20302
  • [9] Adsorption of organic molecules at the TiO2(110) surface: The effect of van der Waals interactions
    Tillotson, Marcus J.
    Brett, Peter M.
    Bennett, Roger A.
    Grau-Crespo, Ricardo
    SURFACE SCIENCE, 2015, 632 : 142 - 153
  • [10] van der Waals potentials of paramagnetic atoms
    Safari, Hassan
    Welsch, Dirk-Gunnar
    Buhmann, Stefan Yoshi
    Scheel, Stefan
    PHYSICAL REVIEW A, 2008, 78 (06):