Self-organization of amphiphilic block copolymers in the presence of water: A mesoscale simulation

被引:13
|
作者
Komarov, Pavel V. [1 ,2 ]
Veselov, Igor N. [2 ]
Khalatur, Pavel G. [1 ,3 ]
机构
[1] Russian Acad Sci, AN Nesmeyanov Organoelement Cpds Inst, Moscow 119991, Russia
[2] Tver State Univ, Tver 170100, Russia
[3] Univ Ulm, Dept Adv Energy Related Nanomat, D-89069 Ulm, Germany
关键词
POLYMER ELECTROLYTE MEMBRANES; ETHER KETONE) MEMBRANES; ATOMISTIC SIMULATIONS; NAFION MEMBRANE; DIBLOCK COPOLYMER; PROTON SOLVATION; MORPHOLOGY; TRANSPORT; HYDRATION; DYNAMICS;
D O I
10.1016/j.cplett.2014.05.004
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Using dissipative particle dynamics, we analyze the suitability of amphiphilic diblock copolymers as a material for high-performance proton conducting membranes of fuel cells. It is shown that the topology of water channel network within hydrated block copolymer-based membranes can be controlled by varying the copolymer blocks length. In particular, our simulations predict the formation of bicontinuous cubic phases for hydrophilic, hydrophobic blocks, and water. The interfaces between microphase-separated subphases form triply periodic minimal surfaces. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:22 / 27
页数:6
相关论文
共 50 条
  • [1] Non-ionic amphiphilic block copolymers by RAFT-polymerization and their self-organization
    Garnier, Sebastien
    Laschewsky, Andre
    COLLOID AND POLYMER SCIENCE, 2006, 284 (11) : 1243 - 1254
  • [2] Synthesis and Self-Organization of Poly(propylene oxide)-Based Amphiphilic and Triphilic Block Copolymers
    Kyeremateng, Samuel O.
    Busse, Karsten
    Kohlbrecher, Joachim
    Kressler, Joerg
    MACROMOLECULES, 2011, 44 (03) : 583 - 593
  • [3] Non-ionic amphiphilic block copolymers by RAFT-polymerization and their self-organization
    Sébastien Garnier
    André Laschewsky
    Colloid and Polymer Science, 2006, 284 : 1243 - 1254
  • [4] From nanoaggregates to mesoscale ribbons: the multistep self-organization of amphiphilic peptides
    Messina, Grazia M. L.
    Mazzuca, Claudia
    Dettin, Monica
    Zamuner, Annj
    Di Napoli, Benedetta
    Ripani, Giorgio
    Marletta, Giovanni
    Palleschi, Antonio
    NANOSCALE ADVANCES, 2021, 3 (12): : 3605 - 3614
  • [5] Molecular dynamics simulation of self-organization in amphiphilic solution
    Fujiwara, Susumu
    Hashimoto, Masato
    Itoh, Takashi
    JOURNAL OF PLASMA PHYSICS, 2006, 72 : 1011 - 1014
  • [6] Self-organization and aggregation of amphiphilic block copolymers of N-vinylpyrrolidone-block-2,2,3,3-tetrafluoropropylmethacrylate at interfaces
    Zamyshlyayeva, O. G.
    Lapteva, O. S.
    Baten'kin, M. A.
    Semchikov, Yu. D.
    Mel'nikova, N. B.
    RUSSIAN CHEMICAL BULLETIN, 2014, 63 (08) : 1823 - 1836
  • [7] Self-organization of amphiphilic polymers
    Khalatur, Pavel G.
    Khokhlov, Alexei R.
    POLIMERY, 2014, 59 (01) : 74 - 79
  • [8] Self-organization of polyphosphazene-polystyrene block copolymers.
    Chang, YK
    Powell, ES
    Allcock, HR
    Kim, C
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2004, 228 : U378 - U378
  • [9] Mesoscale self-organization of polydisperse magnetic nanoparticles at the water surface
    Ukleev, Victor
    Khassanov, Artoem
    Snigireva, Irina
    Konovalov, Oleg
    Vorobiev, Alexei
    JOURNAL OF CHEMICAL PHYSICS, 2024, 160 (07):
  • [10] SELF-ORGANIZATION OF AMPHIPHILIC PORPHYRINS AT THE AIR-WATER-INTERFACE
    KROON, JM
    SUDHOLTER, EJR
    SCHENNING, APHJ
    NOLTE, RJM
    LANGMUIR, 1995, 11 (01) : 214 - 220