Fast calcium transients in dendritic spines driven by extreme statistics

被引:32
|
作者
Basnayake, Kanishka [1 ]
Mazaud, David [2 ]
Bemelmans, Alexis [3 ,4 ]
Rouach, Nathalie [2 ]
Korkotian, Eduard [5 ,6 ]
Holcman, David [1 ,7 ]
机构
[1] Ecole Normale Super, Inst Biol, Computat Biol & Appl Math, Paris, France
[2] Paris Sci & Lettres Res Univ, Labex Memolife, Coll France,Inst Natl St & Rech Med U1050, Ctr Natl Rech Sci UMR 7241,Ctr Interdisciplinary, Paris, France
[3] Mol Imaging Res Ctr, Inst Biol Francois Jacob, Commissariat Energie Atom & Energies Alternative, Fontenay Aux Roses, France
[4] Univ Paris Sud, CNRS, UMR9199, Neurodegenerat Dis Lab, Fontenay Aux Roses, France
[5] Weizmann Inst Sci, Dept Neurobiol, Rehovot, Israel
[6] Perm State Univ, Fac Biol, Perm, Russia
[7] Univ Cambridge, Churchill Coll, Dept Appl Math & Theoret Phys, Cambridge, England
基金
欧洲研究理事会; 欧盟地平线“2020”;
关键词
ENDOPLASMIC-RETICULUM; CA2+ DYNAMICS; PLASTICITY; RELEASE; NEURONS; NECK; MITOCHONDRIA; DIFFUSION; GEOMETRY; STORES;
D O I
10.1371/journal.pbio.2006202
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Fast calcium transients (<10 ms) remain difficult to analyse in cellular microdomains, yet they can modulate key cellular events such as trafficking, local ATP production by endoplasmic reticulum-mitochondria complex (ER-mitochondria complex), or spontaneous activity in astrocytes. In dendritic spines receiving synaptic inputs, we show here that in the presence of a spine apparatus (SA), which is an extension of the smooth ER, a calcium-induced calcium release (CICR) is triggered at the base of the spine by the fastest calcium ions arriving at a Ryanodyne receptor (RyR). The mechanism relies on the asymmetric distributions of RyRs and sarco/ER calcium-ATPase (SERCA) pumps that we predict using a computational model and further confirm experimentally in culture and slice hippocampal neurons. The present mechanism for which the statistics of the fastest particles arriving at a small target, followed by an amplification, is likely to be generic in molecular transduction across cellular microcompartments, such as thin neuronal processes, astrocytes, endfeets, or protrusions.
引用
收藏
页数:26
相关论文
共 50 条
  • [1] Fast calcium transients in dendritic spines driven by extreme statistics (vol 17, e2006202, 2022)
    Basnayake, Kanishka
    Mazaud, David
    Bemelmans, Alexis
    Rouach, Nathalie
    Korkotian, Eduard
    Holcman, David
    PLOS BIOLOGY, 2022, 20 (05)
  • [2] Fast calcium transients in dendritic spines: Theory and experiments
    Volfovsky, N
    Korkotian, E
    Segal, M
    Parnas, H
    NEUROSCIENCE LETTERS, 1998, : S42 - S43
  • [3] Calmodulin Activation by Calcium Transients in the Postsynaptic Density of Dendritic Spines
    Keller, Daniel X.
    Franks, Kevin M.
    Bartol, Thomas M., Jr.
    Sejnowski, Terrence J.
    PLOS ONE, 2008, 3 (04):
  • [4] Confocal imaging of synaptic calcium transients in the dendritic spines of hippocampal pyramidal neurons
    Emptage, NJ
    Bliss, TVP
    Fine, A
    EUROPEAN JOURNAL OF NEUROSCIENCE, 1998, 10 : 267 - 267
  • [5] Synaptically driven calcium transients via nicotinic receptors on somatic spines
    Shoop, RD
    Chang, KT
    Ellisman, MH
    Berg, DK
    JOURNAL OF NEUROSCIENCE, 2001, 21 (03): : 771 - 781
  • [6] Calcium transients released from stores in dendritic spines depend on spine length
    Volfovsky, N
    Korkotian, E
    Segal, M
    Parnas, H
    NEUROSCIENCE LETTERS, 1997, : S51 - S51
  • [7] Fast confocal imaging of calcium released from stores in dendritic spines
    Korkotian, E
    Segal, M
    EUROPEAN JOURNAL OF NEUROSCIENCE, 1998, 10 (06) : 2076 - 2084
  • [8] Calcium Signaling in Dendritic Spines
    Higley, Michael J.
    Sabatini, Bernardo L.
    COLD SPRING HARBOR PERSPECTIVES IN BIOLOGY, 2012, 4 (04):
  • [9] Modeling calcium dynamics in dendritic spines
    Holcman, D
    Schuss, Z
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2005, 65 (03) : 1006 - 1026
  • [10] Plasticity of calcium channels in dendritic spines
    Ryohei Yasuda
    Bernardo L Sabatini
    Karel Svoboda
    Nature Neuroscience, 2003, 6 : 948 - 955