Network-Traffic Anomaly Detection with Incremental Majority Learning

被引:0
|
作者
Huang, Shin-Ying [1 ]
Yu, Fang [2 ]
Tsaih, Rua-Huan [2 ]
Huang, Yennun [1 ]
机构
[1] Acad Sinica, Res Ctr Informat Technol Innovat, Taipei 115, Taiwan
[2] Natl Chengchi Univ, Dept Management Informat Syst, Taipei 11623, Taiwan
关键词
intrusion detection system; outlier detection; neural network incremental learning; REGRESSION; OUTLIERS;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Detecting anomaly behavior in large network traffic data has presented a great challenge in designing effective intrusion detection systems. We propose an adaptive model to learn majority patterns under a dynamic changing environment. We first propose unsupervised learning on data abstraction to extract essential features of samples. We then adopt incremental majority learning with iterative evolutions on fitting envelopes to characterize the majority of samples within moving windows. A network traffic sample is considered an anomaly if its abstract feature falls on the outside of the fitting envelope. We justify the effectiveness of the presented approach against 150000+ traffic samples from the NSL-KDD dataset in training and testing, demonstrating positive promise in detecting network attacks by identifying samples that have abnormal features.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Network Traffic Anomaly Detection via Deep Learning
    Fotiadou, Konstantina
    Velivassaki, Terpsichori-Helen
    Voulkidis, Artemis
    Skias, Dimitrios
    Tsekeridou, Sofia
    Zahariadis, Theodore
    INFORMATION, 2021, 12 (05)
  • [2] Anomaly detection in network traffic with ELSC learning algorithm
    Khan, Muhammad Muntazir
    Rehman, Muhammad Zubair
    Khan, Abdullah
    Abusham, Eimad
    ELECTRONICS LETTERS, 2024, 60 (14)
  • [3] Evaluation of feature learning for anomaly detection in network traffic
    Perez, Daniel
    Alonso, Serafin
    Moran, Antonio
    Prada, Miguel A.
    Fuertes, Juan Jose
    Dominguez, Manuel
    EVOLVING SYSTEMS, 2021, 12 (01) : 79 - 90
  • [4] Evaluation of feature learning for anomaly detection in network traffic
    Daniel Pérez
    Serafín Alonso
    Antonio Morán
    Miguel A. Prada
    Juan José Fuertes
    Manuel Domínguez
    Evolving Systems, 2021, 12 : 79 - 90
  • [5] Learning rules for anomaly detection of hostile network traffic
    Mahoney, MV
    Chan, PK
    THIRD IEEE INTERNATIONAL CONFERENCE ON DATA MINING, PROCEEDINGS, 2003, : 601 - 604
  • [6] Anomaly detection in network traffic
    Duraj, Agnieszka
    Bucki, Pawel
    Drajling, Aleksander
    Makrocki, Robert
    Sipinski, Mateusz
    PRZEGLAD ELEKTROTECHNICZNY, 2022, 98 (12): : 205 - 208
  • [7] Network traffic anomaly detection based on deep learning: a review
    Zhang, Wenjing
    Lei, Xuemei
    INTERNATIONAL JOURNAL OF COMPUTATIONAL SCIENCE AND ENGINEERING, 2024, 27 (03) : 249 - 257
  • [8] Sparse Representation and Dictionary Learning for Network Traffic Anomaly Detection
    Kierul, Tomasz
    Kierul, Michal
    Andrysiak, Tomasz
    Saganowski, Lukasz
    THEORY AND APPLICATIONS OF DEPENDABLE COMPUTER SYSTEMS, DEPCOS-RELCOMEX 2020, 2020, 1173 : 344 - 354
  • [9] Anomaly detection in network traffic using extreme learning machine
    Imamverdiyev, Yadigar
    Sukhostat, Lyudmila
    2016 IEEE 10TH INTERNATIONAL CONFERENCE ON APPLICATION OF INFORMATION AND COMMUNICATION TECHNOLOGIES (AICT), 2016, : 418 - 421
  • [10] Unsupervised Machine Learning for Anomaly Detection in Synchrophasor Network Traffic
    Donner, Phillip
    Leger, Aaron St.
    Blaine, Raymond
    2019 51ST NORTH AMERICAN POWER SYMPOSIUM (NAPS), 2019,