Some evidence on forecasting time-series with support vector machines

被引:8
|
作者
Hansen, J. V. [1 ]
McDonald, J. B.
Nelson, R. D.
机构
[1] Brigham Young Univ, Marriott Sch Management, Provo, UT 84602 USA
[2] Brigham Young Univ, Dept Econ, Provo, UT 84602 USA
关键词
time-series; forecasting; support vector machines;
D O I
10.1057/palgrave.jors.2602073
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
The importance of predicting future values of a time-series transcends a range of disciplines. Economic and business time-series are typically characterized by trend, cycle, seasonal, and random components. Powerful methods have been developed to capture these components by specifying and estimating statistical models. These methods include exponential smoothing, autoregressive integrated moving average (ARIMA), and partially adaptive estimated ARIMA models. New research in pattern recognition through machine learning offers innovative methodologies that can improve forecasting performance. This paper presents a study of the comparative results of time-series analysis on nine problem domains, each of which exhibits differing time-series characteristics. Comparative analyses use ARIMA selection employing an intelligent agent, ARIMA estimation through partially adaptive methods, and support vector machines. The results find that support vector machines weakly dominate the other methods and achieve the best results in eight of nine different data sets.
引用
收藏
页码:1053 / 1063
页数:11
相关论文
共 50 条
  • [1] A mixture of support vector machines for time series forecasting
    Cao, Lijuan
    Zhang Jingqing
    NEURAL NETWORK WORLD, 2006, 16 (05) : 381 - 397
  • [2] Support vector machines experts for time series forecasting
    Cao, LJ
    NEUROCOMPUTING, 2003, 51 : 321 - 339
  • [3] Modified support vector machines in financial time series forecasting
    Tay, FEH
    Cao, LJ
    NEUROCOMPUTING, 2002, 48 : 847 - 861
  • [4] ε-Descending Support Vector Machines for Financial Time Series Forecasting
    Francis E. H. Tay
    L. J. Cao
    Neural Processing Letters, 2002, 15 : 179 - 195
  • [5] Support Vector Machines through Financial Time Series Forecasting
    Kewat, Pooja
    Sharma, Roopesh
    Singh, Upendra
    Itare, Ravikant
    2017 INTERNATIONAL CONFERENCE OF ELECTRONICS, COMMUNICATION AND AEROSPACE TECHNOLOGY (ICECA), VOL 2, 2017, : 471 - 477
  • [6] Financial time series forecasting using support vector machines
    Kim, KJ
    NEUROCOMPUTING, 2003, 55 (1-2) : 307 - 319
  • [7] ε-descending support vector machines for financial time series forecasting
    Tay, FEH
    Cao, LJ
    NEURAL PROCESSING LETTERS, 2002, 15 (02) : 179 - 195
  • [8] Time Series Forecasting with Volume Weighted Support Vector Machines
    Zbikowski, Kamil
    BEYOND DATABASES, ARCHITECTURES AND STRUCTURES, BDAS 2014, 2014, 424 : 250 - 258
  • [9] Application of support vector machines in financial time series forecasting
    Tay, FEH
    Cao, LJ
    OMEGA-INTERNATIONAL JOURNAL OF MANAGEMENT SCIENCE, 2001, 29 (04): : 309 - 317
  • [10] Rejection Based Support Vector Machines for Financial Time Series Forecasting
    Rosowsky, Yasin I.
    Smith, Robert E.
    2013 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2013,