Further improvement on bounds for L-functions related to GL(3)

被引:4
|
作者
Sun, Haiwei [1 ,2 ]
Ye, Yangbo [2 ]
机构
[1] Shandong Univ, Sch Math & Stat, Weihai 264209, Shandong, Peoples R China
[2] Univ Iowa, Dept Math, Iowa City, IA 52242 USA
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Automorphic L-function; Rankin-Selberg L-function; subconvexity bound; Voronoi formula; SELBERG L-FUNCTIONS; CIRCLE METHOD; SUBCONVEXITY; MOMENT; GL(2);
D O I
10.1142/S1793042119500866
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let f be a fixed self-dual Hecke-Maass form for SL(3, Z), and let u be an even Hecke-Maass form for SL(2, Z) with Laplace eigenvalue 1/4 + k(2) , k > 0. A subconvexity bound for L(1/2, f x u) is improved to , O(k(21/16+epsilon))and a subconvexity bound for L(1/2+it, f) is improved to O((1 + vertical bar t vertical bar)(21/32+epsilon)) . New techniques employed include an application of an asymptotic formula by Salazar and Ye [Spectral square moments of a resonance sum for Maass forms, Front. Math. China 12(5) (2017) 1183-1200] to make error terms negligible, an iterative algorithm to locate stationary point, and a non-trivial estimation of Kloosterman sums.
引用
收藏
页码:1487 / 1517
页数:31
相关论文
共 50 条